平成17年度

卒業研究報告書

粒子コードによる荷電粒子と電磁場 の相互作用の基礎的研究

秋田工業高等専門学校 電気工学科

研究者名 相場 亮人

指導教員名 山本 昌志

目 次

第1章	緒言	1
第2章	PIC 法の理論	2
2.1	基礎方程式	2
	2.1.1 マクスウェルの方程式	2
	2.1.2 運動方程式	2
	2.1.3 電磁場と荷電粒子の相互作用	3
2.2	離散化	3
	2.2.1 空間の離散化	3
	2.2.2 時間の離散化	4
	2.2.3 マクスウェルの方程式の離散化	5
	2.2.4 運動方程式の離散化	8
2.3	必要となる計算方法	9
	 2.3.1 粒子に作用する電磁場の計算 	9
	2.3.2 電流密度の計算	11
第3章	数値計算	13
3.1	プログラムの概要...................................	13
第4章	計算結果	14
第5章	考察と今後の課題	16
第6章	結言	17
付録A	計算プログラム	20

要旨

本研究では,粒子コード(Particle-in-Cell Code, PIC 法)を用いて2次元軸対称モデルにおける荷電粒子と電磁場の相互作用を解析するための基礎的研究とプログラムの作成を行った.粒子コードとは,主にマクスウェルの方程式と運動方程式を連立させて解いていくことで相互作用の計算を行う方法である.

粒子コードによって相互作用の計算を行うプログラムを作成したところ,おおよそ正しい解析 結果を得ることが出来た.

第1章 緒言

加速器を設計する際に,荷電粒子の振る舞いとそれによって作られる電磁場を解析することは 重要である.様々な制約条件のもとで要求される性能を引き出すために,通常は計算機シミュレー ションをして最適化を行う.

本研究では,粒子コード(Particle-in-Cell Code, PIC法)を用いて2次元軸対称モデルにおけ る荷電粒子と電磁場の相互作用を解析するための基礎的研究とプログラムの作成を行った.粒子 コードとは,電磁場の作用による粒子の運動の変化と,粒子の運動による電磁場の変化とを交互 に繰り返し計算していくことで相互作用を計算する方法である.

第2章 PIC法の理論

2.1 基礎方程式

2.1.1 マクスウェルの方程式

電磁場の関係は,以下のマクスウェルの方程式によって述べられる.

$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon} \tag{2.1}$$

$$\nabla \cdot \boldsymbol{H} = 0 \tag{2.2}$$

$$\nabla \times \boldsymbol{E} = -\mu \frac{\partial \boldsymbol{H}}{\partial t} \tag{2.3}$$

$$\nabla \times \boldsymbol{H} = \boldsymbol{j} + \varepsilon \frac{\partial \boldsymbol{E}}{\partial t}$$
(2.4)

ここで,Eは電場の強さ,Hは磁場の強さ,jは電流密度を表す. ρ は電荷密度, ε は誘電率, μ は透磁率である.

これらのうち PIC 法では (2.3) 式と (2.4) 式を用いて電磁場の変化を求める.ただし,この微分 方程式を直接計算するのではなく,ストークスの定理を用いて変形した以下の積分形の方程式を 計算することになる.

$$\oint \boldsymbol{E} \cdot d\boldsymbol{l} = -\mu \frac{d}{dt} \int_{S} \boldsymbol{H} \cdot \boldsymbol{n} dS$$
(2.5)

$$\oint \boldsymbol{H} \cdot dl = \int_{S} \boldsymbol{j} \cdot \boldsymbol{n} dS + \varepsilon \frac{d}{dt} \int_{S} \boldsymbol{E} \cdot \boldsymbol{n} dS$$
(2.6)

また,他の(2.1),(2.2)式については初期状態において満たされている必要がある.そうすれば,その後は自動的にこれらの式は満たされることになる.

2.1.2 運動方程式

PIC 法では粒子の運動を解析するために運動方程式を用いるが,高エネルギーの粒子の運動を 扱うので相対論的力学を用いる必要がある.運動方程式は

$$\frac{d\boldsymbol{p}}{dt} = \boldsymbol{F} \tag{2.7}$$

であり,ここで F は力,p は運動量であるが,運動量 p は

$$\boldsymbol{p} = m\boldsymbol{v} = \gamma m_0 \boldsymbol{\beta} c \tag{2.8}$$

となる.mは粒子の質量, m_0 は粒子の静止質量,vは粒子の速度,cは光速度である. β は光速度と粒子の質量の比, γ は相対論的因子で,それぞれ

$$\boldsymbol{\beta} = \frac{\boldsymbol{v}}{c} \tag{2.9}$$

$$\gamma = \frac{1}{\sqrt{1 - |\boldsymbol{\beta}|^2}} \tag{2.10}$$

となる.

一方,力Fはローレンツカのみが解析対象となる.電磁場中で電荷量qをもつ質点が受ける力は

$$\boldsymbol{F} = q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) \tag{2.11}$$

である.ここで B は磁束密度を表す.

以上のことから, 解くべき運動方程式は

$$\frac{d\boldsymbol{p}}{dt} = q(\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B}) \tag{2.12}$$

となる.ここで速度 v は運動量より,

$$\boldsymbol{v} = c\boldsymbol{\beta} = \frac{c\boldsymbol{p}}{\sqrt{m_0^2 c^2 + \boldsymbol{p} \cdot \boldsymbol{p}}} \tag{2.13}$$

と求められる.

2.1.3 電磁場と荷電粒子の相互作用

(2.12)式は,電磁場が荷電粒子の運動に与える作用を表していると言える.一方,粒子が電磁場に与える作用は電流密度の計算式

$$\boldsymbol{j} = nq\boldsymbol{v} \tag{2.14}$$

を用いて求めた電流を (2.6) 式に適用することで考慮される.ここで n は粒子の密度を表す.

以上より電磁場と粒子の運動を連立させることができ,これらの式が PIC 法において相互作用 を計算するための基礎方程式となる.

2.2 離散化

2.2.1 空間の離散化

複雑な境界条件のもとで,その対象全体に対するマクスウェルの方程式を計算することは不可 能に近い.そこで,PIC法では図2.1のように解析対象を細かく領域(メッシュ)に区切って空間 の離散化を行い,各領域に電磁場を配置する.そして,各電磁場に対して(2.5)式や(2.6)式を適 応させ,それらを連立させて解くことで電磁場を計算していく.

図 2.1: 空間の離散化

図 2.1 では rz 面において領域は一様な正方形で区切られているが,必ずしもこのように区切らなければならないということはない.ここでは計算を容易にするためにこのようにしている.

2.2.2 時間の離散化

PIC 法では空間だけでなく,時間も離散化する.離散化された時間軸上では,図2.2のように電場および粒子の位置と,磁場,電流および粒子の運動量は交互にずらして定義する.こうすることで,電磁場や粒子の運動の時間的変化が求められる.

2.2.3 マクスウェルの方程式の離散化

(2.5) 式と (2.6) 式を離散化された空間,時間に適応させる. 本研究において解析対象の電磁場は *TM*₀ モードとするので,

$$E_{\theta} = 0 \qquad \qquad H_r = 0 \qquad \qquad H_z = 0 \tag{2.15}$$

となる.つまり,磁場は θ 方向,電場はz方向とr方向のみについて考えればよい.また,これらの電磁場は全て位置(r, z)の関数となり, θ には依存しない.

図 2.3: H_θの計算

まず , θ 方向の磁場について考える . これは , (2.5)式を図2.3の領域の積分路に対して適応する ことで求められる . (2.5)の左辺は ,

$$\oint \mathbf{E} \cdot dl \simeq \left[E_{r \ i+1/2,j}^{n} - E_{r \ i-1/2,j}^{n} \right] \left(r_{j+1/2} - r_{j-1/2} \right) \\ + \left[E_{z \ i,j-1/2}^{n} - E_{z \ i,j+1/2}^{n} \right] \left(z_{i+1/2} - z_{i-1/2} \right)$$
(2.16)

と近似できる.右辺の近似は,

$$-\mu_0 \frac{d}{dt} \int_S \boldsymbol{H} \cdot \boldsymbol{n} dS \simeq -\frac{\mu_0}{t_{n+1/2} - t_{n-1/2}} \left[H_{\theta} \frac{n+1/2}{i,j} - H_{\theta} \frac{n-1/2}{i,j} \right] \left(z_{i+1/2} - z_{i-1/2} \right) \left(r_{j+1/2} - r_{j-1/2} \right)$$
(2.17)

となり,この両辺は等しいので,

$$\begin{bmatrix} E_{r\ i+1/2,j} - E_{r\ i-1/2,j} \end{bmatrix} \left(r_{j+1/2} - r_{j-1/2} \right) + \begin{bmatrix} E_{z\ i,j-1/2} - E_{z\ i,j+1/2} \end{bmatrix} \left(z_{i+1/2} - z_{i-1/2} \right)$$

$$\simeq -\frac{\mu_0}{t_{n+1/2} - t_{n-1/2}} \begin{bmatrix} H_{\theta\ i,j} & n-1/2 \\ n+1/2 & n-1/2 \end{bmatrix} \left(z_{i+1/2} - z_{i-1/2} \right) \left(r_{j+1/2} - r_{j-1/2} \right)$$

$$(2.18)$$

となる.これを整理すると,

$$H_{\theta \ i,j}^{n+1/2} \simeq H_{\theta \ i,j}^{n-1/2} + \frac{t_{n+1/2} - t_{n-1/2}}{\mu_0} \left[\frac{E_r^{n} - 1/2, j - E_r^{n} - E_r^{n} - E_r^{n}}{z_{i+1/2} - z_{i-1/2}} + \frac{E_z^{n} - E_r^{n} - E_z^{n}}{r_{j+1/2} - E_z^{n} - E_z^{n}} \right] \quad (2.19)$$

が得られる.この式は, $t_{n+1/2}$ での磁場はそれ以前の情報があれば計算できることを示す. ここで,領域の分割間隔を Δl ,時間間隔を Δt で一定とすると (2.19)式は

$$H_{\theta \ i,j}^{n+1/2} \simeq H_{\theta \ i,j}^{n-1/2} + \frac{1}{\mu_0} \frac{\Delta t}{\Delta l} \left[E_r^{n}_{i-1/2,j} - E_r^{n}_{i+1/2,j} + E_z^{n}_{i,j+1/2} - E_z^{n}_{i,j-1/2} \right]$$
(2.20)

となる.

図 2.4: *E_r*の計算

次に, r 方向の電場について考える.これは, (2.6) 式を図 2.4 の積分路に対して適応すること で求められる. (2.6) 式の左辺は,

$$\oint \boldsymbol{H} \cdot dl \simeq \left[H_{\theta} \stackrel{n+1/2}{_{i-1,j}} - H_{\theta} \stackrel{n+1/2}{_{i,j}} \right] r_j \Delta \theta \tag{2.21}$$

と近似できる.右辺の近似は,

$$-\varepsilon_0 \frac{d}{dt} \int_S \boldsymbol{E} \cdot \boldsymbol{n} dS \simeq \frac{\varepsilon_0}{t_{n+1} - t_n} \left[E_r \frac{n+1}{i-1/2,j} - E_r \frac{n}{i-1/2,j} \right] (z_i - z_{i-1}) r_j \Delta \theta$$
(2.22)

となり,両辺は等しいので,

$$H_{\theta} {}^{n+1/2}_{i-1,j} - H_{\theta} {}^{n+1/2}_{i,j} \simeq \frac{\varepsilon_0}{t_{n+1} - t_n} \left[E_r {}^{n+1}_{i-1/2,j} - E_r {}^{n}_{i-1/2,j} \right] (z_i - z_{i-1})$$
(2.23)

となる.これを整理すると,

$$E_{r\ i-1/2,j}^{n+1} \simeq E_{r\ i-1/2,j}^{n} + \frac{t_{n+1} - t_n}{\varepsilon_0 \left(z_i - z_{i-1}\right)} \left[H_{\theta}^{n+1/2} - H_{\theta}^{n+1/2}_{i,j} \right]$$
(2.24)

となる.この式も先程と同様, t_{n+1} での電場はそれ以前の情報があれば計算できることを示している.

ここで,領域の分割間隔を Δl ,時間間隔を Δt で一定とすると (2.24)式は

$$E_{r\ i-1/2,j}^{\ n+1} \simeq E_{r\ i-1/2,j}^{\ n} + \frac{1}{\varepsilon_0} \frac{\Delta t}{\Delta l} \left[H_{\theta\ i-1,j}^{\ n+1/2} - H_{\theta\ i,j}^{\ n+1/2} \right]$$
(2.25)

となる.

図 2.5: *E*_zの計算

最後に , z方向の電場について考える . これは , r方向と同様に(2.6)式を図2.5の積分路に対して適応することで求められる . (2.6)式の左辺は ,

$$\oint \boldsymbol{H} \cdot dl \simeq \left[H_{\theta \ i,j+1}^{n+1/2} r_{j+1} - H_{\theta \ i,j}^{n+1/2} r_j \right] \Delta \theta$$
(2.26)

と近似できる.右辺の近似は,

$$-\varepsilon_0 \frac{d}{dt} \int_S \boldsymbol{E} \cdot \boldsymbol{n} dS \simeq \frac{\varepsilon_0}{t_{n+1} - t_n} \left[E_z \, {}^{n+1}_{i,j+1/2} - E_z \, {}^n_{i,j+1/2} \right] \frac{1}{2} \left(r_{j+1}^2 - r_j^2 \right) \Delta \theta \tag{2.27}$$

となり,両辺は等しいので,

$$H_{\theta \ i,j+1}^{n+1/2}r_{j+1} - H_{\theta \ i,j}^{n+1/2}r_j \simeq \frac{\varepsilon_0}{2(t_{n+1} - t_n)} \left[E_{z \ i,j+1/2}^{n+1} - E_{z \ i,j+1/2}^{n} \right] \left(r_{j+1}^2 - r_j^2 \right)$$
(2.28)

となる.これを整理すると,

$$E_{z} {}^{n+1}_{i,j+1/2} \simeq E_{z} {}^{n}_{i,j+1/2} + \frac{2(t_{n+1} - t_n)}{\varepsilon_0 \left(r_{j+1}^2 - r_j^2\right)} \left[H_{\theta} {}^{n+1/2}_{i,j+1}r_{j+1} - H_{\theta} {}^{n+1/2}_{i,j}r_j\right]$$
$$\simeq E_{z} {}^{n}_{i,j+1/2} + \frac{2(t_{n+1} - t_n)}{\varepsilon_0 \left(r_{j+1} + r_j\right) \left(r_{j+1} - r_j\right)} \left[H_{\theta} {}^{n+1/2}_{i,j+1}r_{j+1} - H_{\theta} {}^{n+1/2}_{i,j}r_j\right]$$
(2.29)

となる.この式も先程と同様, t_{n+1} での電場はそれ以前の情報があれば計算できることを示している.

ここで,領域の分割間隔を Δl ,時間間隔を Δt で一定とすると (2.29) 式は

$$E_{z\ i,j+1/2}^{n+1} \simeq E_{z\ i,j+1/2}^{n} + \frac{2\Delta t}{\varepsilon_0 \left(2r_j + \Delta l\right)\Delta l} \left[H_{\theta\ i,j+1}^{n+1/2} r_{j+1} - H_{\theta\ i,j}^{n+1/2} r_j \right]$$
(2.30)

となる.

2.2.4 運動方程式の離散化

運動量方程式 (2.12)の離散化を行う.この式に (2.13) 式を代入し, $B = \mu_0 H$ と変換すると

$$\frac{d\boldsymbol{p}}{dt} = q \left(\boldsymbol{E} + \frac{c\boldsymbol{p}}{\sqrt{m_0^2 c^2 + \boldsymbol{p} \cdot \boldsymbol{p}}} \times \mu_0 \boldsymbol{H} \right)$$
(2.31)

となるが,この式には右辺にも運動量 pが存在しているため,運動量の変化に現在の運動量が関わってくることになる.そこでこれを一度に計算することはせず,以下のような順序で計算する.

1. △*t*/2の間,時刻*n*の電場で粒子は加速

$$\boldsymbol{p}_1 = \boldsymbol{p}^{n-1/2} + q\boldsymbol{E}^n \frac{\Delta t}{2} \tag{2.32}$$

2. Δt の間,時刻n-1/2とn+1/2の平均磁場で粒子は加速

$$\boldsymbol{p}_{2} = \boldsymbol{p}_{1} + \mu_{0} q \frac{c \boldsymbol{p}_{1}}{\sqrt{m_{0}^{2} c^{2} + \boldsymbol{p}_{1} \cdot \boldsymbol{p}_{1}}} \times \left[\frac{\boldsymbol{H}^{n-1/2} + \boldsymbol{H}^{n+1/2}}{2} \right] \Delta t$$
(2.33)

3. $\Delta t/2$ の間,時刻 nの電場で粒子は加速

$$\boldsymbol{p}^{n+1/2} = \boldsymbol{p}_2 + q\boldsymbol{E}^n \frac{\Delta t}{2} \tag{2.34}$$

こうすることで,運動量の変化を求められる.

求められた運動量から粒子の位置の変化を計算するわけであるが,これは

$$\frac{d\boldsymbol{r}}{dt} = \boldsymbol{v} \tag{2.35}$$

を用いればよい.(2.13)式を用いて,

$$\boldsymbol{r}^{n+1} = \boldsymbol{r}^n + \frac{c\boldsymbol{p}^{n+1/2}}{\sqrt{m_0^2 c^2 + \boldsymbol{p}^{n+1/2} \cdot \boldsymbol{p}^{n+1/2}}} \Delta t$$
(2.36)

が得られる.

2.3 必要となる計算方法

2.3.1 粒子に作用する電磁場の計算

図 2.6: 粒子に作用する電場 Epz の計算

図 2.6 のような位置に粒子が存在する場合の,粒子に作用する z 方向の電場 E_{pz} について考える.これを求めるには,周辺に配置された電場 $E_{z \ i-1/2,j}$, $E_{z \ i+1/2,j}$, $E_{z \ i-1/2,j+1}$, $E_{z \ i+1/2,j+1}$ の影響を粒子からの距離に応じた重み関数を用いて考える必要がある [1].重み関数には,図 2.6に示す長方形の面積 $S_1 \sim S_4$ を用いる.つまり,

$$E_{pz} = \frac{S_1}{\Delta l^2} E_{z \ i+1/2,j} + \frac{S_2}{\Delta l^2} E_{z \ i-1/2,j} + \frac{S_3}{\Delta l^2} E_{z \ i+1/2,j+1} + \frac{S_4}{\Delta l^2} E_{z \ i-1/2,j+1}$$
(2.37)

とする.ここで *S*₁ ~ *S*₄ は

$$S_{1} = (z_{p} - z_{i-1/2}) (r_{j+1} - r_{p})$$

$$S_{2} = (z_{i+1/2} - z_{p}) (r_{j+1} - r_{p})$$

$$S_{3} = (z_{p} - z_{i-1/2}) (r_{p} - r_{j})$$

$$S_{4} = (z_{i+1/2} - z_{p}) (r_{p} - r_{j})$$

である.

図 2.7: 粒子に作用する電場 Epr の計算

r方向の電界 E_{pr} を求める場合も同様である.図2.7において,

$$E_{pr} = \frac{S_1}{\Delta l^2} E_{r\ i+1,j-1/2} + \frac{S_2}{\Delta l^2} E_{r\ i,j-1/2} + \frac{S_3}{\Delta l^2} E_{r\ i+1,j+1/2} + \frac{S_4}{\Delta l^2} E_{r\ i,j+1/2}$$
(2.38)

と求められる.

図 2.8: 粒子に作用する磁場 $H_{p\theta}$ の計算

磁場についてもやはり同様で、図 2.8 において粒子に作用する磁場 $H_{p\theta}$ は

 $H_{p\theta} = \frac{S_1}{\Delta l^2} H_{\theta \ i+1/2, j-1/2} + \frac{S_2}{\Delta l^2} H_{\theta \ i-1/2, j-1/2} + \frac{S_3}{\Delta l^2} H_{\theta \ i+1/2, j+1/2} + \frac{S_4}{\Delta l^2} H_{\theta \ i-1/2, j+1/2}$ (2.39) と求められる .

2.3.2 電流密度の計算

電流密度の計算には (2.14) 式が用いられるが, このとき電荷保存則

$$\nabla \cdot \boldsymbol{j} + \frac{d\rho}{dt} = 0 \tag{2.40}$$

が満たされている必要がある.この式は,電荷が突如発生,あるいは消滅することは無いという ことを示し,(2.1)式と(2.4)式から得られる.つまりこの式が満たされていれば,(2.1)式が自動 的に満たされることになる.

ここでは, (2.14) 式で求めた電流を重み関数を用いて周辺の各点に配分するという方法をとる. 粒子が Δt の間に (z_1, r_1) から (z_2, r_2) へと移動したとして,計算手順を以下に示す [2].ここで $|z_2 - z_1| < \Delta l$ かつ $|r_2 - r_1| < \Delta l$ とする.

- 1. $\frac{z_1}{\Lambda l}$, $\frac{z_2}{\Lambda l}$, $\frac{r_1}{\Lambda l}$, $\frac{r_2}{\Lambda l}$ の各値の小数点以下を切り捨てた整数値をそれぞれ i_1 , i_2 , j_1 , j_2 とする.
- 2. relay point (z_r, r_r) を設定する.これは異なる領域間を粒子が移動する場合について考える際に役立つ.

$$z_r = \begin{cases} \frac{z_1 + z_2}{2} & (i_1 = i_2) \\ \max(i_1 \Delta l, i_2 \Delta l) & (i_1 \neq i_2) \end{cases}$$
(2.41)

$$r_r = \begin{cases} \frac{r_1 + r_2}{2} & (j_1 = j_2) \\ \max(j_1 \Delta l, j_2 \Delta l) & (j_1 \neq j_2) \end{cases}$$
(2.42)

とする.

- 3. $\frac{z_1}{\Lambda i}$, $\frac{r_1}{\Lambda}$ を四捨五入した整数値をそれぞれ i, jとする.
- 4. 粒子の速度として,

$$v_z = \frac{z_r - z_1}{\Delta t} \qquad \qquad v_r = \frac{r_r - r_1}{\Delta t} \tag{2.43}$$

を求める.

5. 一次形状関数を計算する.

$$W_i^{(1)} = \frac{z_1 + z_r}{2\Delta l} - i \qquad \qquad W_j^{(1)} = \frac{r_1 + r_r}{2\Delta l} - j \qquad (2.44)$$

6. モーメントを計算する.ここで, q は θ 方向一周分の電荷量である.

$$F_{z1} = qv_z \left(\frac{1}{2} - W_i^{(1)}\right) , F_{z2} = qv_z \left(\frac{1}{2} + W_i^{(1)}\right)$$

$$F_{r1} = qv_r \left(\frac{1}{2} - W_j^{(1)}\right) , F_{r2} = qv_r \left(\frac{1}{2} + W_j^{(1)}\right)$$
(2.45)

7. 二次形状関数を計算する.

$$W_{i-1}^{(2)} = \frac{1}{2} \left(\frac{1}{2} - W_{i}^{(1)}\right)^{2} , W_{i}^{(2)} = \frac{3}{4} - \left(W_{i}^{(1)}\right)^{2} , W_{i+1}^{(2)} = \frac{1}{2} \left(\frac{1}{2} + W_{i}^{(1)}\right)^{2}$$

$$W_{j-1}^{(2)} = \frac{1}{2} \left(\frac{1}{2} - W_{j}^{(1)}\right)^{2} , W_{j}^{(2)} = \frac{3}{4} - \left(W_{j}^{(1)}\right)^{2} , W_{j+1}^{(2)} = \frac{1}{2} \left(\frac{1}{2} + W_{j}^{(1)}\right)^{2}$$

$$(2.46)$$

8. 各電流値を計算する.

$$\begin{aligned} j_{z \ i-1/2,j-1} &= \frac{1}{2(j-1)\pi\Delta l^3} F_{z1} W_{j-1}^{(2)} \\ j_{z \ i+1/2,j-1} &= \frac{1}{2(j-1)\pi\Delta l^3} F_{z2} W_{j-1}^{(2)} \\ j_{z \ i-1/2,j} &= \frac{1}{2j\pi\Delta l^3} F_{z1} W_j^{(2)} \\ j_{z \ i-1/2,j+1} &= \frac{1}{2(j+1)\pi\Delta l^3} F_{z1} W_{j+1}^{(2)} \\ j_{z \ i-1/2,j+1} &= \frac{1}{2(j+1)\pi\Delta l^3} F_{z2} W_{j+1}^{(2)} \\ j_{z \ i+1/2,j+1} &= \frac{1}{2(j+1)\pi\Delta l^3} F_{z2} W_{j+1}^{(2)} \\ j_{r \ i-1,j-1/2} &= \frac{1}{2(j-1)\pi\Delta l^3} F_{r1} W_{i-1}^{(2)} \\ j_{r \ i,j-1/2} &= \frac{1}{2j\pi\Delta l^3} F_{r1} W_i^{(2)} \\ j_{r \ i,j+1/2} &= \frac{1}{2j\pi\Delta l^3} F_{r2} W_i^{(2)} \\ j_{r \ i+1,j-1/2} &= \frac{1}{2(j+1)\pi\Delta l^3} F_{r1} W_i^{(2)} \\ j_{r \ i+1,j-1/2} &= \frac{1}{2(j+1)\pi\Delta l^3} F_{r1} W_i^{(2)} \\ j_{r \ i+1,j-1/2} &= \frac{1}{2(j+1)\pi\Delta l^3} F_{r1} W_{i+1}^{(2)} \\ j_{r \ i+1,j+1/2} &= \frac{1}{2(j+1)\pi\Delta l^3} F_{r2} W_{i+1}^{(2)} \end{aligned}$$

9. z_1 , z_r , r_1 , r_r をそれぞれ z_r , z_2 , r_r , r_2 に変えて 3.~8. を同様に計算する.

この電流密度の計算方法は基本的に電荷保存則を満たすが,導体境界周辺の電流密度を計算す る場合には影像電荷の考え方が必要となる.つまり,図2.9のように大きさが同じで符号が逆の荷 電粒子が境界の向こう側で境界線に対して線対称の運動をしていると考え,その影響を足し合わ せるのである.

図 2.9: 影像電荷

第3章 数值計算

3.1 プログラムの概要

粒子コードを用いて 2 次元軸対称モデルの加速管内部の電磁場および粒子の運動を計算するプログラムを作成した.使用した言語は C++である.

プログラムは,以下のような順番で計算を行う.

- 1. 粒子の初期状態(位置,運動量)を設定する.
- 2. ポアソン方程式を解いてメッシュの各頂点での電位を計算し,そこから各電場の強さ *E* を 求める.
- 3. 電場 E_z^n , E_r^n から, 磁場 $H_{\theta}^{n+1/2}$ を (2.20) 式を用いて計算する.
- 4. 電場 E_z^n , E_r^n と磁場 $H_{\theta}^{n-1/2}$, $H_{\theta}^{n+1/2}$ から, 粒子の運動量 $p_z^{n+1/2}$, $p_r^{n+1/2}$ を (2.32) ~ (2.34) 式を用いて計算する.
- 5. 運動量 $p_z^{n+1/2}$, $p_r^{n+1/2}$ から, 粒子の位置 z^{n+1} , r^{n+1} を (2.36) 式を用いて計算する.
- 6. 運動量 $p_z^{n+1/2}$, $p_r^{n+1/2}$ から , 電流密度 $j_z^{n+1/2}$, $j_r^{n+1/2}$ を 2.3.2 節で述べた方法を用いて計算 する .
- 7. 磁場 $H_{\theta}^{n+1/2}$ と電流密度 $j_z^{n+1/2}$, $j_r^{n+1/2}$ から, 電場 E_z^{n+1} , E_r^{n+1} を (2.25), (2.30) 式を用いて計算する.
- 8. *n*を増やし, 3.~7.を繰り返し計算していく.

詳しい内容については,付録Aに示す.

第4章 計算結果

今回は,図4.1に示す2次元軸対称モデルの加速管中を電子ビームが通過したときの電磁場について解析を行った.

図 4.1: 解析するモデル

電子ビームはバンチ・ビーム(電子の塊)で,そのビーム長は10.0[mm],ビーム半径は2.5[mm], エネルギーは100[MeV]である.

左右端には吸収境界条件,それ以外には完全導体境界条件を適用した. 図 4.2 に磁場の変化の様子を,図 4.3 に電場の変化の様子を示す.

図 4.2: 磁場解析結果

図 4.3: 電場解析結果

第5章 考察と今後の課題

結果からは,電子ビームによって加速管内に電磁場が誘起されている様子が良く見て取れる.電子の進行方向に電磁場が現れないのは,電子がほぼ光速で運動しているためである.また,導体面では電磁場の波が反射していることが見て取れた.

この電磁場の推移の様子は,加速器に関する文献 [3]の図と良く似ていた.このことから,この プログラムによるシミュレーション結果に大きな間違いは無いと考えている.詳しい計算精度の 検証は今後の課題である.

今回の計算では一次近似の式を用いたが,精度を上げるためにはより高次の計算式を用いる必要がある.また,曲線を含むような複雑な形状について解析を行う場合には,今回のような正方形で領域を分割する方法では誤差が大きくなってしまう.これを改善するためには,より形状精度の高い三角形による分割を行う必要がある.

作成したプログラムは各種パラメータを変える際にプログラムコードを直接書き換えなければ ならない仕様になっていて不便なので,GUIによる入出力インターフェイスを設けることも今後 の課題である.

第6章 結言

- 本研究では,粒子コードを用いて2次元軸対称モデルの電磁場と荷電粒子の相互作用を解析 するために式の変形などを行った.
- 実際に作成したプログラムでは、おおよそ正しい結果を得ることに成功した.詳しい計算精度の検証は今後の課題である。
- プログラムの改善点として,三角形分割,より高次の計算式の使用,GUIへの対応,などが 挙げられる.

謝辞

ご指導して下さった担当教官の山本昌志先生,様々な面でご協力していただいた研究室の皆さんに感謝の意を表します.

関連図書

- [1] 川田 重夫・松本 正己 共著『電磁気学-電磁気現象のコンピュータシミュレーション入門-』シ ミュレーション物理学 (1)(近代科学社,1993)
- [2] Takayuki Umeda, Yoshiharu Omura, and Hiroshi Matsumoto. Charge conservation methods for computing current densities in electromagnetic particle-in-cell simulatioons. 2005.
- [3] 竹田 誠之 他 著『OHO'90 高エネルギー加速器セミナー』(1990)

付録A 計算プログラム

リスト A.1: 作成した電場解析のプログラム

```
#include<iostream>
1
 2
   #include<math.h>
 3
   #include<stdlib.h>
   #include<time.h>
4
   #include<GL/glut.h>
5
 6
7
   #define I 1000
   #define P 1000000
8
9
10
   using namespace std;
11
12
   void display (void); //表示
13
   void data_in (void); //初期值設定
   void init_efield (void); //初期電界計算
14
   void sor (void); //SOR法
15
   void mfield (void); //磁場計算
16
   void velocity (void); //速度計算
17
   void position (void); //座標計算
18
   void current (void); //電流計算
19
   void efield (void); //電場計算
20
   void emission (void); //電子放出
21
22
   double color (double data); //色の指定
23
   double ez[I][I]; //z方向の電場
24
25
   double er [I][I]; // r方向の電場
   double ht [I] [I]; //t(シータ)方向の磁場
26
27
   double pzp[P]; //粒子の z方向運動量
28
   double prp[P]; //粒子の r方向運動量
29
   double zp[P]; //粒子のz座標
30
31
   double rp[P]; //粒子の r座標
32
   double qp[P]; //粒子一周分の電荷
33
   double jz[I][I]; //z方向の電流
double jr[I][I]; //r方向の電流
double phi[I][I]; //静電ポテンシャル
34
35
36
   double hta [I] [I]; //磁場平均
37
38
39
   double zpb[P]; //前に粒子がいた位置( z座標 )
40
   double rpb[P]; //前に粒子がいた位置(r座標)
41
42
   int f [ I ] [ I ]; //=1なら管外および境界
43
44
   double dl; //メッシュ間隔
45
   double dt; //時間間隔
46
   int npt; //総粒子数
47
48 int nz; // z方向の格子点数
```

```
49
    int nr; // r方向の格子点数
50
    int it_end; //最大計算回数
    double z_max; // z最大值
51
    double r_max; // r最大値
double q; //粒子1個の電荷量
52
53
    double Q; //粒子一周分の電荷量(最も外側での)
54
    double m0; //粒子の静止質量
double c; //光速
55
56
    double myu; //透磁率
57
    double eps; //誘電率
58
    double v0; //管壁の電位
59
    double vb; //ビームの加速電圧
60
    int p_emission; // dt秒間に放出する粒子数
61
    int flag; //=1ならば、これ以上総粒子数は増えない
double lb;//ビーム長さ
62
63
    double rb;//ビーム半径
64
    int n_over; //通過した粒子の数
65
    int nd;//减衰領域数
66
67
    double ld; //減衰領域長さ
68
    int main(int argc, char* argv[])
69
70
    {
71
      data_in();
72
      init_efield ();
73
74
      glutInit(&argc, argv);
 75
 76
      glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE);
 77
      glutInitWindowSize(890,80);
      glutCreateWindow(argv[0]);
78
      glutDisplayFunc(display);
79
      glutMainLoop();
80
81
      return 0;
82
    }
83
84
85
    /*表示*/
86
    void display ()
87
    {
88
      int it; //計算回数
89
      int i,j;
90
      double z, r;
91
      for (it=1; it <= it_end; it++){
92
93
94
         mfield();
95
96
         velocity();
97
98
         position();
99
100
         current();
101
         efield();
102
103
         if (((it -1)%10)==0){
104
           glClear (GL_COLOR_BUFFER_BIT);
105
106
107
           for ( i=nd+1; i<=nz+nd-1; i++){
             for ( j=1; j<=nr−1; j++){
108
109
               /*電界の強さ表示*/
```

110	$if(f[i][j]==1\&\&f[i+1][j]==1\&\&f[i][j+1]==1\&\&f[i+1][j+1]==1)\{$
111	glColor3d(0.5, 0.5, 0.5);
112	glBegin(GLQUADS);
113	$glVertex2d((i-nd-1)*dl*2.0/z_max-1.0,(j-1)*dl*2.0/r_max-1.0);$
114	$glVertex2d((i-nd)*dl*2.0/z_max-1.0,(j-1)*dl*2.0/r_max-1.0);$
115	$glVertex2d((i-nd)*dl*2.0/z_max-1.0, j*dl*2.0/r_max-1.0);$
116	$glVertex2d((i-nd-1)*dl*2.0/z_max-1.0, j*dl*2.0/r_max-1.0);$
117	glEnd();
118	}else{
119	glColor3d(color(sqrt(pow(ez[i][j],2)+pow(er[i][j],2))))
120	$(\operatorname{color}(\operatorname{sgrt}(\operatorname{pow}(\operatorname{ez}[i][j],2) + \operatorname{pow}(\operatorname{er}[i][j],2))))$
121	$\operatorname{color}(\operatorname{sqrt}(\operatorname{pow}(\operatorname{ez}[i][i],2) + \operatorname{pow}(\operatorname{er}[i][i],2))));$
122	glBegin (GLQUADS);
123	$glVertex2d((i-nd-1)*dl*2.0/z_max-1.0,(j-1)*dl*2.0/r_max-1.0);$
124	$glVertex2d((i-nd-0.5)*dl*2.0/z_max-1.0,(j-1)*dl*2.0/r_max-1.0);$
125	$glVertex2d((i-nd-0.5)*dl*2.0/z_max-1.0,(i-0.5)*dl*2.0/r_max-1.0);$
126	$glVertex2d((i-nd-1)*dl*2.0/z_max-1.0,(i-0.5)*dl*2.0/r_max-1.0);$
127	glEnd():
128	8();
129	gColor3d(color(sart(pow(ez[i][i],2)+pow(er[i+1][i],2))))
130	color(sart(pow(ez[i][j],2)+pow(er[i+1][j],2)))
131	(c) (c)
132	gBegin (GL QUADS):
133	glVertex2d $((i-nd-0.5)*d]*2.0/z max - 1.0.(i-1)*d]*2.0/r max - 1.0)$
134	glVertex2d((i - nd) * dl * 2.0/z max - 1.0.(i - 1)* dl * 2.0/r max - 1.0);
135	glVertex2d((i-nd)*dl*2.0/2.max - 1.0, (j-0.5)*dl*2.0/r.max - 1.0);
136	glVertex2d((i - nd - 0.5)*dl*2.0/2 - max - 1.0, (j - 0.5)*dl*2.0/1 - max - 1.0);
137	g [Find ():
138	giblid ();
130	g[Color3d(color(sart(pow(ez[i][i+1]2)+pow(er[i][i]2)))]
1/0	color(sart(pow(ez[i][j+1],2)+pow(er[i][j],2)))
1/1	$(\operatorname{color}(\operatorname{sqrt}(\operatorname{pow}(\operatorname{ez}[i][j+1],2)+\operatorname{pow}(\operatorname{er}[i][j],2))))$
1/2	
142	$gIUertax^{2}d((i-nd-1)*d1*2)/(a-max-1)0/(i-0)*d1*2)/(r-max-1)0)$
140	$g_1Vertex2d((1-nd-1)*d_1*2.0/2-max-1.0,(1-0.5)*d_1*2.0/1-max-1.0),$ $g_1Vertex2d((1-nd-0.5)*d_1*2.0/2-max-1.0,(1-0.5)*d_1*2.0/1-max-1.0),$
1/5	$g_1 = 10, g_2 = 10, g_3 = 10, g_4 = 10, g_5 $
1/6	glVertex2d((1 nd - 1)*dl*2.0/2 max - 1.0, j*dl*2.0/1 max - 1.0);
147	glFnd().
1/8	ginna (),
140	alColor3d(color(sart(now(or[i][i+1]2)+now(or[i+1][i]2))))
149	globilista(color(sqlt(pow(ez[1][j+1],2)+pow(er[1+1][j],2))))
151	(color(sqrt(pow(ez[i][j+1],2)+pow(er[i+1][j],2))))
152	(CI, OIADS)
152	glUertex2d $((i-nd-0.5)*d)*2.0/2 max = 1.0.(i-0.5)*d)*2.0/r max = 1.0)$
154	glVertex2d((i-nd)*dl*2.0/2 max = 1.0, (j=0.5)*dl*2.0/2 max = 1.0),
155	glVertex2d((1-nd)*dl*2.0/2-max - 1.0, (j - 0.0)*dl*2.0/1-max - 1.0);
156	glVortox2d((1 nd)*d1*2.0/2 max - 1.0, j*d1*2.0/1 max - 1.0),
157	$g_1 v_1 v_2 v_2 u_1 (1 - nu - 0.5) * u_1 * 2.0 / 2 - nax - 1.0, 5 * u_1 * 2.0 / 1 - nax - 1.0),$
158	
150	
160	۲ ا
161	」 /* 約子の位置表示 * /
162	$\sigma r \mu \mu \nu \nu \mu \mu \mu \chi m^{2}/\mu$
162	for $(i-1)i < -nnt + i + +)$
164	$\frac{1}{1-1} \frac{1}{1-1} \frac{1}{1-1-1} \frac{1}{1-1-1} \frac{1}{1-1-1-1} \frac{1}{1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-$
165	$g_{i} = (a p_{i}) + 2 p_{i} = 1 0$
166	$z = (zp_{1}) = 10 / (x_{2}) / (z_{1}) = 1.0;$ r=rp[i] + 2.0 / r max = 1.0;
167	1 - 1 p [1] * 2.0 / 1 - 11 a x = 1.0, a Vortov 2d (a - r).
160	$\operatorname{giveriex}_{2}\operatorname{d}(2,1);$
160	
170	j mlut Sman Rufford ().
110	gruidwapdurrers ();

```
171
        }
172
        if(flag == 0){
173
          emission();
174
        }
175
      }
176
177
      return;
178
    }
179
    /*色指定*/
180
    double color (double data)
181
182
    {
      data=data/2000;
183
184
      if (data >1.0) {
185
        data = 1.0;
      else if (data < 0.0)
186
        data = 0.0;
187
188
      }
189
      return data;
190
    }
191
192
    /*初期値設定*/
193
    void data_in (void)
194
    {
      /*定数*/
195
196
      q=-1.602e-19; //粒子1個の電荷量
      Q=-1.602e-12; //粒子一周分の電荷量(-番外側での)
197
198
      m0=9.1093897e-31; //粒子の静止質量
199
      c=299792458; //光速
200
      myu=1.25663706e-6; //透磁率
      eps=8.854187816e-12; //誘電率
201
202
203
      dl=1.0e-3; //メッシュ間隔
      dt=5.0e-13; //時間間隔
204
205
      npt=0; //総粒子数(最初は0に設定)
206
      nz=445; // z方向のメッシュ数
207
      nr=40; // r方向のメッシュ数
208
209
210
      it_end =10000001; //最大計算回数
211
212
      z_{max}=dl*(nz-1.0); //z最大值
213
      r_{max}=dl*(nr-1.0); //r最大値
214
      v0=0.0; //管壁の電位
215
216
217
      vb = 100.0e6;
      lb = 10.0e - 3;
218
219
      rb = 2.5e - 3;
220
      p_emission=5; // dt秒間に放出する粒子数
221
222
      flag=0;
      n_over=0;
223
224
225
      nd = 50;
226
      ld=nd*dl;
227
      /*各値を0に初期化*/
228
229
      int i, j;
      for (i=0;i<=nz+2*nd+1;i++){
230
231
        for (j=0; j \le nr+1; j++)
```

```
232
            ez[i][j]=0.0;
233
            er[i][j]=0.0;
234
            ht[i][j]=0.0;
235
            jz[i] = 0.0;
236
            jr[i][j]=0.0;
237
            phi[i][j]=0.0;
238
            hta[i][j]=0.0;
239
            f[i][j]=0;
240
          }
       }
241
242
       /*粒子の初期設定*/
243
244
       double rr, zz;
245
       for (i=1; i <= (P-1); i++){
246
         zp[i] = ld - nd * dl / 5;
247
          rr = rand()\%1001;
         rp[i] = rr / 1000.0 * rb;
248
249
250
         pzp[i] = sqrt(fabs(2*m0*q*vb));
251
         prp[i] = 0.0;
252
253
         qp[i]=Q*rp[i]/r_max+q;
       }
254
255
256
       return;
257
     }
258
     /*初期電界計算*/
259
260
     void init_efield (void)
261
     {
       int i,j;
262
263
264
       /*境界条件*/
265
       for ( i=1; i<=nz+2*nd; i++){
         phi[i][nr]=v0;
266
267
          f[i][nr] = 1;
268
       }
269
       for (i=1; i \le nz+2*nd; i++)
270
          for ( j=1; j<=nr; j++){
271
            if(((j-1)*dl) \ge 10.0e-3)\&\&
272
               ((i-1)*dl \le 50.0e-3+ld ||
273
                 (80.0e-3+ld \le (i-1)*dl\&\&(i-1)*dl \le 85.0e-3+ld)
274
                 (115.0e-3+ld \le (i-1)*dl\&\&(i-1)*dl \le 120.0e-3+ld)
275
                 (150.0e-3+ld \le (i-1)*dl\&\&(i-1)*dl \le 155.0e-3+ld)
276
                 (185.0e-3+ld \le (i-1)*dl\&\&(i-1)*dl \le 190.0e-3+ld)
277
                 (220.0e-3+ld \le (i-1)*dl\&\&(i-1)*dl \le 225.0e-3+ld)
278
                 (255.0e-3+ld \le (i-1)*dl \& (i-1)*dl \le 260.0e-3+ld)
279
                 (290.0e-3+ld \le (i-1)*dl\&\&(i-1)*dl \le 295.0e-3+ld)
                 (325.0e-3+ld \le (i-1)*dl \& (i-1)*dl \le 330.0e-3+ld) | |
280
281
                 (360.0e-3+ld \le (i-1)*dl\&\&(i-1)*dl \le 365.0e-3+ld)
282
                 (395.0e-3+ld \le (i-1)*dl)))
283
              phi[i][j]=v0;
              f[i][j]=1;
284
285
            }
286
         }
       }
287
288
289
       sor();//SOR法
290
       /*電界=電位差/距離*/
291
       for (i=1; i \le nz+2*nd-1; i++)
292
```

```
293
         for ( j=1; j<=nr; j++){
294
            ez [i][j]=(phi[i][j]-phi[i+1][j])/dl;
295
         }
296
297
       for ( i=1; i<=nz+2*nd; i++){
298
         for ( j =1; j <=nr −1; j++){
299
            er [i][j]=(phi[i][j]-phi[i][j+1])/dl;
300
         }
301
       }
302
303
       return;
304
    }
305
     /*SOR法*/
306
307
    void sor (void)
308
    {
309
       double phi1, phi2, omega;
310
       double sa, total;
311
       double e;
312
       int i,j,order;
313
314
       omega = 1.9;
315
       e=1.0e-15; //誤差
316
       order=0;//0:正順 1:逆順
317
318
       while (1) {
319
         sa = 0.0;
320
         total = 0.0;
321
         if(order == 0){
322
            for ( i=1; i<=nz+2*nd; i++){
              for ( j=1; j<=nr; j++){
323
                if(f[i][j]==0){
324
                   if(j==1){
325
                     phi1=0.25*(2*phi[i][2]+phi[i-1][1]+phi[i+1][1]);
326
327
                  }else{
328
                     phi1=0.25*(phi[i][j-1]+phi[i][j+1]+phi[i-1][j]+phi[i+1][j]);
                  }
329
330
                  phi2=phi[i][j]+omega*(phi1-phi[i][j]);
                  sa+=fabs(phi2-phi[i][j]);
331
332
                   total+=fabs(phi2);
333
                  phi[i][j]=phi2;
334
                }
              }
335
336
337
            if(total == 0){
338
              total=e;
339
340
            if(sa/total < e){
341
              break;
342
            }
343
            order=1;
344
         }else{
            for (i=nz+2*nd; i \ge 1; i - -)
345
              for ( j=nr; j>=1; j--){
346
                if(f[i][j]==0){
347
348
                   if(j==1){
                     phi1=0.25*(2*phi[i][2]+phi[i-1][1]+phi[i+1][1]);
349
350
                  }else{
                     phi1 = 0.25*(phi[i][j-1]+phi[i][j+1]+phi[i-1][j]+phi[i+1][j]);
351
352
                  }
                  phi2=phi[i][j]+omega*(phi1-phi[i][j]);
353
```

```
354
                    sa = fabs(phi2-phi[i][j]);
355
                    total += fabs(phi2);
356
                    phi[i][j]=phi2;
357
                 }
358
               }
359
360
             if(total == 0){
361
               total=e;
362
             if(sa/total<e){</pre>
363
364
               break;
365
366
             order=0;
367
          }
368
       }
369
370
       return;
371
     }
372
373
     /*磁場計算*/
374
     void mfield (void)
375
     {
376
       int i, j;
377
        for (i=1;i<=nz+2*nd-1;i++){
378
          for ( j =1; j <=nr −1; j++){
379
            hta [i][j]=ht[i][j]
               +(er[i][j]-er[i+1][j]+ez[i][j+1]-ez[i][j])/(2.0*dl*myu)*dt;
380
381
            ht [i][j]+=(er[i][j]-er[i+1][j]+ez[i][j+1]-ez[i][j])/(dl*myu)*dt;
382
          }
383
       }
384
385
       return;
386
     }
387
     /*速度計算*/
388
389
     void velocity (void)
390
     {
391
        int n, z, r, z_{-}, r_{-};
392
       double z1, z2, r1, r2, z_1, z_2, r_1, r_2;
393
       double s1, s2, s3, s4;
394
       double epz, epr, hpt, p1z, p1r, p2z, p2r;
395
396
        for(n=1;n=npt;n++){
397
          /* z方向の電界計算 */
398
399
          z_{-} = (int)(zp[n]/dl + 0.5);
          z_1 = (\mathbf{double}) z_* dl;
400
          z_2=z_1+dl; // z_1とz_2の間に粒子が存在
401
          \mathbf{r} = (\mathbf{int})(\mathbf{rp}[n]/dl);
402
403
          r1 = (\mathbf{double}) r * d1;
404
          r2=r1+dl; // y1とy2の間に粒子が存在
          s1 = (zp[n] - (z_1 - 0.5*dl))*(rp[n] - r1);
405
406
          s2 = ((z_2 - 0.5 * d1) - zp[n]) * (rp[n] - r1);
          s3 = (zp[n] - (z_1 - 0.5*dl))*(r2 - rp[n]);
407
          s4 = ((z_2 - 0.5 * d1) - zp[n]) * (r2 - rp[n]);
408
409
          if ( z_==0){
            epz = ((s4+s3) * ez [1] [r+1] + (s2+s1) * ez [1] [r+2]) / (dl * dl);
410
411
          }else{
            epz = (s4 * ez [z_-][r+1] + s3 * ez [z_+1][r+1]
412
                  +s2*ez[z_{-}][r+2]+s1*ez[z_{-}+1][r+2])/(dl*dl);
413
414
          }
```

```
415
416
          /* r方向の電界計算 */
417
          z = (int)(zp[n]/dl);
418
          z1 = (double) z * dl;
419
          z_{2=z_{1+d_{1}}};
420
          r_{-}=(int)(rp[n]/dl+0.5);
          r_1 = (\mathbf{double}) r_* dl:
421
422
          r_2 = r_1 + dl;
423
          s1 = (zp[n] - z1) * (rp[n] - (r_1 - 0.5 * d1));
          s2 = (z2 - zp[n]) * (rp[n] - (r_1 - 0.5 * d1));
424
425
          s3 = (zp[n] - z1) * ((r_2 - 0.5 * d1) - rp[n]);
426
          s4 = (z2 - zp[n]) * ((r_2 - 0.5 * d1) - rp[n]);
427
          if(r_{-}==0){
428
            epr = ((s2-s4) * er [z+1][1] + (s1-s3) * er [z+2][1]) / (dl * dl);
429
          }else{
430
            epr = (s4 * er [z+1][r_-] + s3 * er [z+2][r_-]
                  +s2*er[z+1][r_+1]+s1*er[z+2][r_+1])/(dl*dl);
431
432
          }
433
          /*磁界計算*/
434
          s1 = (zp[n] - (z_1 - 0.5*dl))*(rp[n] - (r_1 - 0.5*dl));
435
436
          s2 = ((z_2 - 0.5 * dl) - zp[n]) * (rp[n] - (r_1 - 0.5 * dl));
437
          s3 = (zp[n] - (z_1 - 0.5*dl))*((r_2 - 0.5*dl) - rp[n]);
438
          s4 = ((z_2 - 0.5 * dl) - zp[n]) * ((r_2 - 0.5 * dl) - rp[n]);
439
          if ((r_==0)&&(z_==0)){
440
            hpt = ((s1+s2-s3-s4)*hta[1][1])/(dl*dl);
441
          else if(r_{-}==0)
442
            hpt = ((s_2-s_4) * hta [z_] [1] + (s_1-s_3) * hta [z_+1] [1]) / (dl * dl);
443
          else if(z_{-}==0)
444
            hpt = ((s4+s3)*hta[1][r_]+(s2+s1)*hta[1][r_+1])/(dl*dl);
445
          }else{
            hpt = (s4 * hta [z_-] [r_-] + s3 * hta [z_-+1] [r_-]
446
                  +s2*hta[z_{-}][r_{-}+1]+s1*hta[z_{-}+1][r_{-}+1])/(dl*dl);
447
          }
448
449
          /*運動量計算*/
450
451
          p1z=pzp[n]+q*epz*dt/2.0;
452
          p1r=prp[n]+q*epr*dt/2.0;
453
454
          p2z=p1z+myu*q*c*p1r*hpt*dt/sqrt(m0*m0*c*c+p1z*p1z+p1r*p1r);
455
          p2r=p1r-myu*q*c*p1z*hpt*dt/sqrt(m0*m0*c*c+p1z*p1z+p1r*p1r);
456
457
          pzp[n] = p2z+q*epz*dt/2.0;
458
          prp[n] = p2r+q*epr*dt / 2.0;
459
       }
460
461
       return;
462
     }
463
464
     /*座標計算*/
465
     void position (void)
466
     {
467
       int n;
468
469
470
       for (n=1;n<=npt;n++){
          zpb[n] = zp[n];
471
472
          rpb[n] = rp[n];
473
474
          zp[n] = c*pzp[n]*dt/sqrt(m0*m0*c*c+pzp[n]*pzp[n]+prp[n]*prp[n]);
          rp[n] = c*prp[n]*dt/sqrt(m0*m0*c*c+pzp[n]*pzp[n]+prp[n]*prp[n]);
475
```

```
476
477
          if(zp[n] >= lb+ld-nd*dl/5.0){
478
             flag = 1;
479
          }
480
        }
481
482
        return;
483
484
     }
485
     /*電流計算*/
486
     void current (void)
487
488
     {
489
490
        \mathbf{int} \ n\,, i\,\,, j\,;
        int i1, j1, i2, j2, i11, j11, i22, j22;
491
492
        double zrp, rrp;
493
        double wi, wj, wi1, wi2, wi3, wj1, wj2, wj3;
494
        double fz1, fz2, fr1, fr2;
495
        double vz1, vz2, vr1, vr2;
496
        /*0に初期化*/
497
        for ( i=0; i<=nz+2*nd+2; i++){
498
499
          for ( j=0; j<=nr+3; j++){
500
             jz[i] = 0.0;
501
          }
502
        }
503
        for (i=0;i<=nz+2*nd+3;i++){
504
          for (j=0; j \le nr+2; j++)
505
             jr[i][j]=0.0;
          }
506
        }
507
508
509
        for (n=1;n<=npt;n++){
510
511
          i1 = (int)(zpb[n]/dl);
          i2 = (int)(zp[n]/dl);
512
513
          j1 = (int)(rpb[n]/dl);
514
          j2 = (int)(rp[n]/dl);
515
516
          /* relay pointの設定 */
517
          if(i1==i2){
518
             \operatorname{zrp} = (\operatorname{zpb}[n] + \operatorname{zp}[n]) / 2.0;
519
          }else{
520
             if(i1>i2){
521
               zrp=i1*dl;
522
             }else{
523
               zrp=i2*dl;
524
             }
525
          }
526
          if(j1==j2){
             rrp = (rpb[n] + rp[n]) / 2.0;
527
528
          }else{
529
             if(j1>j2){
530
               rrp=j1*dl;
531
             }else{
532
               rrp=j2*dl;
533
             }
534
          }
535
536
          /*from(z1, r1)to(zr, rr)*/
```

```
537
538
           i11 = (int)(zpb[n]/dl + 0.5);
539
          j11 = (int)(rpb[n]/dl + 0.5);
540
541
          /* velocity */
           vz1 = (zrp - zpb[n]) / dt;
542
543
           vr1 = (rrp - rpb[n]) / dt;
544
545
           /* first-order shape factor*/
546
           wi = (zpb[n] + zrp) / (2*dl) - i11;
547
           w_j = (rpb[n] + rrp) / (2*dl) - j11;
548
           /* charge flux */
549
550
           fz1=qp[n]*vz1*(0.5-wi);
551
           fz_{2=qp}[n] * vz_{1} * (0.5 + wi);
552
           fr1 = qp[n] * vr1 * (0.5 - wj);
553
           fr2=qp[n]*vr1*(0.5+wj);
554
555
           /*second-order shape factor*/
556
           wi1 = 0.5 * pow((0.5 - wi), 2);
557
           wi2 = 0.75 - pow(wi, 2);
558
           wi3 = 0.5 * pow((0.5 + wi), 2);
559
           w_{j1} = 0.5 * pow((0.5 - w_{j}), 2);
560
           w_j 2 = 0.75 - pow(w_j, 2);
           w_j = 0.5 * pow((0.5 + w_j), 2);
561
562
563
           /* current density */
564
           if(j11 == 0){
565
             if(i11 == 0){
566
                |z[1][2] + = (fz1+fz2) * (wj1+wj3) / (M_PI*dl*dl*2.0*dl);
567
                jz[1][1] + = (fz1+fz2) * wj2/(M_PI * 0.25 * dl * dl * dl);
                jr[2][1] = (fr2-fr1)*wi1/(M_PI*dl*dl*dl);
568
                jr[1][1] + = (fr1 - fr2) * wi2 / (M_PI * dl * dl * dl );
569
570
             else if (i11=nz+2*nd-1)
                jz [nz+2*nd-1][2] + = (fz1+fz2)*(wj1+wj3)/(M_PI*dl*dl*2.0*dl);
571
572
                jz [nz+2*nd-1][1] + = (fz1+fz2)*wj2/(M_PI*0.25*dl*dl*dl);
573
                jr [nz+2*nd-1][1] = (fr 2 - fr 1) * wi3 / (M_PI*dl*dl*dl);
574
                jr [nz+2*nd][1] + = (fr1-fr2)*wi2/(M_PI*dl*dl*dl);
575
             }else{
                |z[i11][2] + = fz1*(wi1+wi3)/(M_PI*d1*d1*2.0*d1);
576
577
                jz [i11][1] + = fz 1 * wj2 / (M_PI * 0.25 * dl * dl * dl );
578
                jz [i11+1][2] + = fz2*(wj1+wj3)/(M_PI*dl*dl*2.0*dl);
579
                jz [i11+1][1] + = fz 2 * wj2 / (M_PI * 0.25 * dl * dl * dl );
580
581
             jr[i11][1] + = (fr2 - fr1) * wi1 / (M_PI * dl * dl * dl );
             jr[i11+1][1] + = (fr2-fr1) * wi2/(M_PI*dl*dl*dl);
582
             jr [i11+2][1] + = (fr2-fr1) * wi3 / (M_PI * dl * dl * dl );
583
584
           }else if(j11==1){
585
             if(i11==0){
                jz[1][1] + = (fz1+fz2) * wj1 / (M_PI * 0.25 * dl * dl * dl);
586
587
                jz[1][2] + = (fz1+fz2) * wj2/(M_PI*dl*dl*2.0*dl);
588
                jz [1][3] + = (fz1+fz2) * wj3 / (M_PI * d1 * d1 * 4.0 * d1);
                jr[2][1] = fr1 * wi1 / (M_PI * d1 * d1 * d1 );
589
                jr[1][1] = fr1 * wi2 / (M_PI * dl * dl * dl );
590
                \operatorname{jr}[2][2] = \operatorname{fr}2 * \operatorname{wi1}/(M_PI * dI * dI * 3.0 * dI);
591
                \operatorname{jr}[1][2] = \operatorname{fr} 2 * \operatorname{wi} 2 / (M_PI * d1 * d1 * 3.0 * d1);
592
593
             else if (i11=nz+2*nd-1)
594
                jz [nz+2*nd-1][1] + = (fz1+fz2)*wj1/(M_PI*0.25*dl*dl*dl);
595
               jz [nz+2*nd-1][2] = (fz 1+fz 2)*wj2/(M_PI*d1*d1*2.0*d1);
596
               jz [nz+2*nd-1][3] = (fz1+fz2)*wj3/(M_PI*d1*d1*d1*d.0*d1);
                ir [nz+2*nd-1][1] = fr 1 * wi3 / (M_PI*d1*d1*d1);
597
```

```
598
                ir [nz+2*nd][1] = fr 1 * wi2 / (M_PI*dl*dl*dl);
599
                ir [nz+2*nd-1][2] = fr 2*wi3/(M_PI*dl*dl*3.0*dl);
600
                jr [nz+2*nd][2] = fr 2*wi2/(M_PI*dl*dl*3.0*dl);
601
             }else{
602
                iz[i11][1] + = fz1 * wi1 / (M_PI * 0.25 * dl * dl * dl);
603
                jz [i11][2] + = fz 1 * wj2 / (M_PI * d1 * d1 * 2.0 * d1);
                jz [i11][3] + = fz 1 * wj3 / (M_PI * d1 * d1 * 4.0 * d1);
604
                iz [i11+1][1] + = fz 2 * wi1 / (M_PI * 0.25 * dl * dl * dl );
605
606
                jz [i11+1][2] + = fz 2 * wj2 / (M_PI * d1 * d1 * 2.0 * d1);
                jz [i11+1][3] + = fz 2 * wj3 / (M_PI * d1 * d1 * 4.0 * d1);
607
608
             ir [i11][1] + = fr 1 * wi1 / (M_PI * d1 * d1 * d1 );
609
             jr [i11+1][1] + = fr 1 * wi2 / (M_PI * d1 * d1 * d1 );
610
611
             jr [i11+2][1] + = fr 1 * wi3 / (M_PI * d1 * d1 * d1 );
612
             jr [i11][2] + = fr 2 * wi1 / (M_PI * d1 * d1 * 3.0 * d1);
613
614
             ir [i11+1][2] = fr 2 * wi2 / (M_PI * d1 * d1 * 3.0 * d1);
             ir [i11+2][2] = fr 2 * wi3 / (M_PI * d1 * d1 * 3.0 * d1);
615
616
           }else{
617
             if(i11 == 0){
                jz [1][j11]+=(fz1+fz2)*wj1/(M_PI*dl*dl*2.0*(j11-1)*dl);
618
619
                jz [1][j11+1] = (fz1+fz2) * wj2/(M_PI * d1 * d1 * 2.0 * j11 * d1);
620
                jz [1] [j11+2] = (fz1+fz2) * wj3/(M_PI * dl * dl * 2.0 * (j11+1) * dl);
621
                jr [2][j11] = fr1 * wi1 / (M_PI * d1 * d1 * 2.0 * (j11 - 0.5) * d1);
622
                jr [1][j11] = fr1 * wi2 / (M_PI * d1 * d1 * 2.0 * (j11 - 0.5) * d1);
623
                jr [2][j11+1]=fr2*wi1/(M_PI*dl*dl*2.0*(j11+0.5)*dl);
624
                \operatorname{ir} [1] [\operatorname{i} 11+1] = \operatorname{fr} 2 * \operatorname{wi} 2 / (M_PI * d1 * d1 * 2.0 * (\operatorname{i} 11+0.5) * d1);
625
             else if (i11=nz+2*nd-1)
626
                iz [nz+2*nd-1][i11] + = (fz1+fz2)*wi1/(M_PI*dl*dl*2.0*(i11-1)*dl);
627
                jz [nz+2*nd-1][j11+1] = (fz1+fz2)*wj2/(M_PI*dl*dl*2.0*j11*dl);
628
                jz [nz+2*nd-1][j11+2] = (fz1+fz2)*wj3/(M_PI*dl*dl*2.0*(j11+1)*dl);
                jr [nz+2*nd-1][j11] = fr 1*wi3/(M_PI*dl*dl*2.0*(j11-0.5)*dl);
629
                jr [nz+2*nd] [j11] = fr1*wi2/(M_PI*dl*dl*2.0*(j11-0.5)*dl);
630
                jr [nz+2*nd-1][j11+1] = fr 2*wi3/(M_PI*dl*dl*2.0*(j11+0.5)*dl);
631
                jr [nz+2*nd] [j11+1] = fr 2*wi2/(M_PI*dl*dl*2.0*(j11+0.5)*dl);
632
633
             }else{
634
                jz[i11][j11] + = fz1 * wj1 / (M_PI * dl * dl * 2.0 * (j11-1) * dl);
635
                jz [i11] [j11+1] + = fz1 * wj2 / (M_PI * d1 * d1 * 2.0 * j11 * d1);
               iz [i11] [i11+2] = fz_1 * w_{i3} / (M_PI * d1 * d1 * 2.0 * (i11+1) * d1);
636
                jz [i11+1][j11] + = fz 2 * wj1 / (M_PI * d1 * d1 * 2.0 * (j11-1) * d1);
637
638
                jz [i11+1][j11+1] = fz 2 * wj2 / (M_PI * d1 * d1 * 2.0 * j11 * d1);
639
                jz [i11+1][j11+2] = fz 2 * wj3 / (M_PI * d1 * d1 * 2.0 * (j11+1) * d1);
640
                jr [i11+1][j11] = fr1 * wi2/(M_PI * d1 * d1 * 2.0 * (j11-0.5) * d1);
641
                jr [i11+1][j11+1] = fr 2 * wi2 / (M_PI * dl * dl * 2.0 * (j11+0.5) * dl);
642
             jr [i11][j11] + = fr1 * wi1 / (M_PI * d1 * d1 * 2.0 * (j11 - 0.5) * d1);
643
             jr [i11+1][j11] = fr 1 * wi2 / (M_PI * d1 * d1 * 2.0 * (j11-0.5) * d1);
644
645
             jr [i11+2][j11] = fr1*wi3/(M_PI*dl*dl*2.0*(j11-0.5)*dl);
646
             ir [i11] [i11+1] = fr 2 * wi1 / (M_PI * d1 * d1 * 2.0 * (i11+0.5) * d1);
647
             ir [i11+1][i11+1] + = fr 2 * wi2 / (M_PI * dl * dl * 2.0 * (i11+0.5) * dl);
648
649
             jr [i11+2][j11+1] = fr 2 * wi3 / (M_PI * dl * dl * 2.0 * (j11+0.5) * dl);
           }
650
651
           /* from (zr, rr) to (z2, r2)*/
652
653
          i22 = (int)(zrp/dl+0.5);
654
655
          j22 = (int)(rrp/dl + 0.5);
656
657
           /* velocity */
658
           vz2 = (zp[n] - zrp)/dt;
```

```
659
          vr2 = (rp[n] - rrp)/dt;
660
661
          /*first-order shape factor*/
662
          wi = (zrp + zp[n]) / (2 * d1) - i22;
663
          w_i = (rrp + rp[n]) / (2 * d1) - i22;
664
665
          /*charge flux*/
666
          fz1=qp[n]*vz2*(0.5-wi);
667
          fz2=qp[n]*vz2*(0.5+wi);
668
          fr1 = qp[n] * vr2 * (0.5 - wj);
669
          fr2 = qp[n] * vr2 * (0.5 + wj);
670
671
          /*second-order shape factor*/
672
          wi1 = 0.5 * pow((0.5 - wi), 2);
673
          wi2 = 0.75 - pow(wi, 2);
674
          wi3 = 0.5 * pow((0.5 + wi), 2);
          wi1 = 0.5 * pow((0.5 - wj), 2);
675
          w_{i2}=0.75-pow(w_{i},2);
676
677
          w_{j3} = 0.5 * pow((0.5 + w_{j}), 2);
678
679
          /* current density */
680
          if(j22==0){
            if(i22 == 0){
681
682
               jz[1][2] + = (fz1+fz2)*(wj1+wj3)/(M_PI*dl*dl*2.0*dl);
683
               jz[1][1] + = (fz1+fz2) * wj2/(M_PI*0.25*dl*dl*dl);
684
               jr[1][1] + = (fr1 - fr2) * wi2 / (M_PI * dl * dl * dl );
685
               jr[2][1] = (fr2 - fr1) * wi1 / (M_PI * dl * dl * dl );
             }else if (i22=nz+2*nd-1){
686
687
               iz [nz+2*nd-1][2] = (fz1+fz2)*(wi1+wi3)/(M_PI*d1*d1*2.0*d1);
688
               jz [nz+2*nd-1][1] + = (fz1+fz2)*wj2/(M_PI*0.25*dl*dl*dl);
               jr [nz+2*nd][1] + = (fr 1 - fr 2) * wi2 / (M_PI*dl*dl*dl);
689
               ir [nz+2*nd-1][1] = (fr 2 - fr 1) * wi3 / (M_PI*d1*d1*d1);
690
691
            }else{
               jz [i22][2] + = fz1*(wj1+wj3)/(M_PI*dl*dl*2.0*dl);
692
               jz [i22][1] + = fz 1 * wj2 / (M_PI * 0.25 * dl * dl * dl );
693
694
               jz [i22+1][2] = fz2*(wj1+wj3)/(M_PI*dl*dl*2.0*dl);
695
               jz [i22+1][1] + = fz 2 * wj2 / (M_PI * 0.25 * dl * dl * dl );
696
            }
            jr [i22][1] + = (fr2 - fr1) * wi1 / (M_PI * dl * dl * dl );
697
698
            jr [i22+1][1] + = (fr2-fr1) * wi2/(M_PI * dl * dl * dl);
699
            jr [i22+2][1] = (fr2-fr1) * wi3 / (M_PI * d1 * d1 * d1);
700
          else if(j22==1)
701
            if(i22==0){
702
               jz [1][1] + = (fz1+fz2)*wj1/(M_PI*0.25*dl*dl*dl);
703
               jz[1][2] + = (fz1+fz2)*wj2/(M_PI*d1*d1*2.0*d1);
704
               jz[1][3] + = (fz1+fz2)*wj3/(M_PI*d1*d1*d1*d.0*d1);
705
               jr[2][1] = fr1 * wi1 / (M_PI * dl * dl * dl );
706
               jr[1][1] - = fr1 * wi2 / (M_PI * d1 * d1 * d1 );
               jr[2][2] = fr2 * wi1 / (M_PI * d1 * d1 * 3.0 * d1);
707
708
               ir [1][2] = fr 2 * wi2 / (M_PI * d1 * d1 * 3.0 * d1);
709
             else if (i22 = nz + 2*nd - 1)
               jz [nz+2*nd-1][1] + = (fz1+fz2)*wj1/(M_PI*0.25*dl*dl*dl);
710
               jz [nz+2*nd-1][2] + = (fz1+fz2)*wj2/(M_PI*dl*dl*2.0*dl);
711
712
               jz [nz+2*nd-1][3] + = (fz1+fz2)*wj3/(M_PI*dl*dl*dl*4.0*dl);
713
               jr [nz+2*nd-1][1] = fr 1 * wi1 / (M_PI*dl*dl*dl*dl);
               jr [nz+2*nd][1] = fr 1 * wi2 / (M_PI*dl*dl*dl);
714
               jr [nz+2*nd-1][2] = fr 2*wi1/(M_PI*dl*dl*3.0*dl);
715
716
               ir [nz+2*nd][2] = fr 2*wi2/(M_PI*dl*dl*3.0*dl);
717
            }else{
               jz [i22][1] + = fz 1 * wj1 / (M_PI * 0.25 * d1 * d1 * d1);
718
               jz [i22][2] + = fz 1 * wj2 / (M_PI * d1 * d1 * 2.0 * d1);
719
```

```
720
                          jz [i22][3] + = fz 1 * wj3 / (M_PI * d1 * d1 * 4.0 * d1);
721
                          iz [i22+1][1] + = fz 2 * wi1 / (M_PI * 0.25 * dl * dl * dl );
                          jz [i22+1][2] + = fz 2 * wj2/(M_PI * d1 * d1 * 2.0 * d1);
722
723
                          |z| ||z| + ||z| + |z| 
724
725
                      ir [i22][1] + = fr 1 * wi1 / (M_PI * d1 * d1 * d1);
726
                      ir [i22+1][1] + = fr 1 * wi2 / (M_PI * d1 * d1 * d1 );
727
                      ir [i22+2][1] = fr 1 * wi3 / (M_PI * d1 * d1 * d1 );
728
729
                      jr [i22][2] + = fr 2 * wi1 / (M_PI * d1 * d1 * 3.0 * d1);
730
                      ir [i22+1][2] = fr 2 * wi2 / (M_PI * d1 * d1 * 3.0 * d1);
                      ir [i22+2][2] + = fr 2 * wi3 / (M_PI * d1 * d1 * 3.0 * d1);
731
732
                  }else{
733
                      if(i22==0){
734
                          iz [1][i22] = (fz1+fz2) * wi1 / (M_PI * d1 * d1 * 2.0*(i22-1)* d1);
735
                          iz [1] [i22+1] = (fz1+fz2) * wi2 / (M_PI * d1 * d1 * 2.0 * i22 * d1);
                          |z[1]| |z^{2}+2| = (fz^{2}+fz^{2}) * w^{3}/(M_{PI} * dl * dl * 2.0 * (j^{2}+1) * dl);
736
737
                          ir [2] [i22] = fr 1 * wi1 / (M_PI * d1 * d1 * 2.0 * (i22 - 0.5) * d1);
738
                          ir [1] [i22] = fr 1 * wi2 / (M_PI * d1 * d1 * 2.0 * (i22 - 0.5) * d1);
739
                          \operatorname{ir} [2] [i22+1] = \operatorname{fr} 2 * \operatorname{wi1} / (M_PI * dI * dI * 2.0 * (i22+0.5) * dI);
                          jr [1] [j22+1] = fr 2 * wi2 / (M_PI * d1 * d1 * 2.0 * (j22+0.5) * d1);
740
741
                      else if (i22 = nz + 2*nd - 1)
                          jz [nz+2*nd-1][j22] + = (fz1+fz2)*wj1/(M_PI*dl*dl*2.0*(j22-1)*dl);
742
                          jz [nz+2*nd-1][j22+1] = (fz1+fz2)*wj2/(M_PI*d1*d1*2.0*j22*d1);
743
                          jz [nz+2*nd-1][j22+2] = (fz1+fz2)*wj3/(M_PI*dl*dl*2.0*(j22+1)*dl);
744
745
                          jr [nz+2*nd-1][j22] = fr 1*wi3/(M_PI*dl*dl*2.0*(j22-0.5)*dl);
746
                          ir [nz+2*nd] [i22] = fr1*wi2/(M_PI*dl*dl*2.0*(i22-0.5)*dl);
747
                          ir [nz+2*nd-1][i22+1] = fr2*wi3/(M_PI*dl*dl*2.0*(i22+0.5)*dl);
748
                          ir [nz+2*nd] [i22+1] = fr 2*wi2/(M_PI*dl*dl*2.0*(i22+0.5)*dl);
749
                      }else{
                          jz [i22] [j22] + = fz 1 * wj1 / (M_PI * d1 * d1 * 2.0 * (j22 - 1) * d1);
750
                          jz [i22] [j22+1] = fz 1 * wj2 / (M_PI * d1 * d1 * 2.0 * j22 * d1);
751
752
                          jz [i22] [j22+2] = fz 1 * wj3 / (M_PI * d1 * d1 * 2.0 * (j22+1) * d1);
                          jz [i22+1][j22] = fz2*wj1/(M_PI*dl*dl*2.0*(j22-1)*dl);
753
                          jz [i22+1][j22+1] = fz2*wj2/(M_PI*dl*dl*2.0*j22*dl);
754
                          jz [i22+1][j22+2] = fz2*wj3/(M_PI*dl*dl*2.0*(j22+1)*dl);
755
                          ir [i22+1][j22] = fr 1 * wi2 / (M_PI * d1 * d1 * 2.0 * (j22-0.5) * d1);
756
                          ir [i22+1][j22+1] = fr 2 * wi2 / (M_PI * d1 * d1 * 2.0 * (j22+0.5) * d1);
757
758
                      }
759
                      ir [i22] [j22] + = fr 1 * wi1 / (M_PI * d1 * d1 * 2.0 * (j22 - 0.5) * d1);
760
                      jr [i22+1][j22] = fr 1 * wi2 / (M_PI * d1 * d1 * 2.0 * (j22-0.5) * d1);
                      jr [i22+2][j22]+=fr1*wi3/(M_PI*dl*dl*2.0*(j22-0.5)*dl);
761
762
                      jr [i22] [j22+1] = fr2*wi1/(M_PI*dl*dl*2.0*(j22+0.5)*dl);
763
764
                      jr [i22+1][j22+1] = fr 2 * wi2 / (M_PI * dl * dl * 2.0 * (j22+0.5) * dl);
765
                      jr [i22+2][j22+1] = fr 2 * wi3 / (M_PI * d1 * d1 * 2.0 * (j22+0.5) * d1);
766
                  }
767
                  /*座標修正*/
768
                 double rr;
769
770
                  if(zp[n]>z_max+ld+dl*nz*0.05)
771
                      n_over++;
772
                      if(n_over >= npt)
773
                          npt=0;
774
                      }
775
776
                  if(rp[n]>r_max){
                      rp[n] = r_max;
777
                  else if(rp[n] < 0.0)
778
779
                      rp[n] = fabs(rp[n]);
780
                      prp[n] = -prp[n];
```

```
781
          }
782
        }
783
784
        return;
785
786
     }
787
788
     /*電場計算*/
789
     void efield (void)
790
     {
791
        int i, j;
792
793
        for (i=1; i \le nz+2*nd-1; i++)
794
           ez[i][1] + = (4.0 * ht[i][1]/dl - jz[i][1]) * dt/eps;
795
           if(i<=nd){
796
             ez[i][1] = (1 - pow((ld - (i - 0.5) * dl)/ld, 2));
           else if (i>=nz+nd){
797
798
             ez[i][1] = (1 - pow(((i - 0.5) + dl - ld - z_max)/ld, 2));
799
           }
800
801
        for (i=1; i \le nz+2*nd-1; i++)
802
           for (j=2; j \le nr-1; j++)
             if(f[i] = 0 || f[i+1] | j = 0)
803
                ez[i][j] + = ((ht[i][j] * (j-0.5) - ht[i][j-1] * (j-1.5)))
804
805
                              /(dl*(j-1.0)) - jz[i][j])*dt/eps;
806
                if(i<=nd){
807
                  ez[i][j] = (1 - pow((ld - (i - 0.5) * dl)/ld, 2));
808
                else if(i>=nz+nd)
                  ez[i][j] = (1 - pow(((i - 0.5) * dl - ld - z_max)/ld, 2));
809
810
               }
811
             }
          }
812
        }
813
814
        for (i=2;i<=nz+2*nd-1;i++){
815
           for (j=1; j \le nr-1; j++){
816
             if ( f [ i ] [ j ]==0|| f [ i ] [ j+1]==0){
817
818
                er [i][j]+=((ht[i-1][j]-ht[i][j])/dl-jr[i][j])*dt/eps;
819
                if(i<=nd){
820
                  \operatorname{er}[i][j] = (1 - \operatorname{pow}((\operatorname{Id} - (i - 1) * \operatorname{dl}) / \operatorname{Id}, 2));
821
                else if(i>nz+nd)
822
                  er[i][j] = (1 - pow((((i-1)) + dl - ld - z_max)/ld, 2));
823
               }
824
             }
825
          }
826
        }
827
828
        return;
829
     }
830
     /*電子放出*/
831
832
     void emission (void)
833
     {
834
        npt+=p_emission;
835
836
        return;
837
     }
```