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Abstract. Electromagnetic theoretic analysis of shielded homogeneous and isotropic di-
electric spheres has been made. Characteristic equations for the TE and TM modes have
been derived. Dielectric spheres of radii of the order of µm size are found suitable for the
optical frequency region whereas for the microwave region radii of the order of mm size
are found suitable. Parameters suitable for their application in the optical and microwave
frequency ranges have been used to compute the frequencies corresponding to the normal
modes for the TE and TM modes. Expressions for the quality factors for realistic res-
onators, i.e., for a dielectric sphere with a non-zero conductivity and a metal shield with
a finite conductivity have also been derived for the TE and TM modes. Computations of
the quality factors have been made for resonators with parameters suitable for the optical
and the microwave regions.
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1. Introduction

The earliest reported study on spherical resonators seems to be that of Debye [1]
wherein he has studied normal modes of a conducting sphere embedded in a perfect
dielectric medium. Stratton has treated the above case and the case of oscillations
of a spherical cavity in his classic text [2]. While discussing the cavity resonators,
Waldron [3] has considered the case of the spherical homogeneous simple perfect
cavity and has derived the field expressions and the characteristic equations for such
a cavity based on the treatment of Bromwich [4]. A dielectric sphere with a given
dielectric constant and radius possesses natural modes of oscillation having charac-
teristic frequencies. Such oscillations are known as structure resonances and these
have been studied both theoretically and experimentally in the microwave region
[5,6] and more recently in the optical region of the electromagnetic spectrum [7–10].
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Structure resonances have been studied using fluorescence [11], optical levitation
[12], absorption [13] and scattering [14].

Electromagnetic field analysis of spherical dielectric resonators has been pre-
sented by a number of workers [15]. In all the above cases the resonant frequencies
and the quality factors have been computed for the resonators with parameters
suitable for the microwave region. From the survey of the published literature it
seems that no theoretical and/or experimental studies are available for the optical
frequency region. In addition neither the normal mode frequencies nor the quality
factors in the optical region seem to have been reported for shielded spherical di-
electric resonators. Shielded resonators have drastically reduced quality factors due
to metallic loss of the shield and dielectric loss of the dielectric medium. However,
cavity resonators with superconducting walls have been found to have a Q factor
as high as 109 at cryogenic temperatures [16]. In the present work, electromagnetic
field analysis for the shielded dielectric resonators has been presented. Expressions
for the field components, the characteristic equations and the quality factors have
been derived. The resonant frequencies and the quality factors have been computed
for the optical and microwave regions.

2. Theory

The shielded homogeneous and isotropic spherical dielectric resonator is in principle
equivalent to a spherical hole in a perfect conductor, filled with the dielectric mate-
rial. Waldron [3] has presented the analysis for a spherical cavity in a perfect con-
ductor. However, the procedure followed by Waldron [3] seems to be rather clumsy.
In the present work eigenmodes of a spherical homogeneous and isotropic dielectric
resonator enclosed in a metallic spherical shell are determined using straightforward
procedure. In a source-free homogeneous and dielectric medium the four Maxwell’s
equations are given by

~∇ · ~D = 0, (1a)

~∇ · ~B = 0, (1b)

~∇× ~E = −∂
~B

∂t
, (1c)

~∇× ~H =
∂ ~D

∂t
. (1d)

Constitutive relations for ~B and ~D are given by

~B = µ ~H = µ0µr ~H, (2a)

~D = ε ~E = εrε0 ~E, (2b)

where µ0 and ε0 are respectively the permeability and permittivity of the free space,
µ and ε are the corresponding quantities for the dielectric material and µr = µ/µ0,

εr = ε/ε0. For a non-magnetic dielectric, µr = 1 and hence, ~B = µ0
~H.
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Assuming ejωt time dependence for ~E and ~H and using eqs (2a) and (2b), eqs
(1a)–(1d) reduce to

~∇ · ~E = 0, (3a)

~∇ · ~H = 0, (3b)

~∇× ~E = −jωµ0
~H, (3c)

~∇× ~H = jωεrε0 ~E. (3d)

Using expression for the curl in the spherical polar coordinates system (Appendix
A, eq. (A1)) eqs (3c) and (3d) give

jωµ0Hr = −
1

r2 sin θ

{

∂(r sin θEφ)

∂θ
− ∂(rEθ)

∂φ

}

, (4a)

jωµ0Hθ = −
1

r sin θ

{

∂(Er)

∂φ
− ∂(r sin θEφ)

∂r

}

, (4b)

jωµ0Hφ = −1

r

{

∂(rEθ)

∂r
− ∂(Er)

∂θ

}

, (4c)

jωεrε0Er =
1

r2 sin θ

{

∂(r sin θHφ)

∂θ
− ∂(rHθ)

∂φ

}

, (5a)

jωεrε0Eθ =
1

r sin θ

{

∂(Hr)

∂φ
− ∂(r sin θHφ)

∂r

}

, (5b)

jωεrε0Eφ =
1

r

{

∂(rHθ)

∂r
− ∂(Hr)

∂θ

}

. (5c)

Equations (4a)–(4c) can be used to find magnetic field components provided the
field electric components are known. Similarly, eqs (5a)–(5c) can be used to find
field electric components provided the magnetic field components are known. Now
taking the curl of eq. (3c) we get

~∇× (~∇× ~E) = −jωµ0(~∇× ~H). (6)

Using the vector identity (eq. (A2)), and using eqs (3a) and (3d) we get

(

∇2 + µ0ε0εrω
2
)

~E = 0. (7)

Similarly, taking the curl of eq. (3d) and using eqs (3b) and (3c) we get

(

∇2 + µ0ε0εrω
2
)

~H = 0. (8)

Equations (7) and (8) represent differential equations for the electric vector ~E and

the magnetic vector ~H respectively. In the following we use the standard theory
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[17–20] to find the electric and magnetic fields for the TE and TM modes separately.
For the TE mode the following condition is satisfied:

~r · ~E = 0. (9)

The electric field ( ~E) can be written in terms of the gradient of some scalar function
ψ as

~E = ~r × ~∇ψ. (10)

Evidently, eq. (10) satisfies condition (9) (one may verify this using eqs (9) and
(10) and the vector identity (A3)). Here, ψ is any well-behaved scalar field that
satisfies the Helmholtz equation (Appendix B, eq. (B1)). Using ψ determined in
the Appendix B (eq. (B11)) components of the electric field can be determined

using eq. (10) and the expression of ~∇ψ given in eq. (A4) as

Er = 0, (11a)

Eθ =
mA√
r sin θ

Jn+(1/2)(kr)P
m
n (cos θ) sinmφ, (11b)

Eφ =
A√
r
Jn+(1/2)(kr)

d

dθ
{Pm

n (cos θ)} cosmφ. (11c)

Alternatively, introducing the angular momentum operator ~L defined as, ~L =

(1/j)(~r × ~∇), where j =
√
−1, and constructing L2 and its relationship with the

Laplacian operator (∇2), the solution for TE mode can be constructed following
Jackson [20]. Both the methods yield equivalent results as can be verified from the
field expressions (11a)–(11c) and the ones given by Jackson [20].

Now substituting the values of Er, Eθ and Eφ from eqs (11a)–(11c) into eqs (4a)–
(4c), one obtains expressions for Hr, Hθ and Hφ. The RHS of eq. (4a) involves Eθ
and Eφ and substituting the values of Eθ and Eφ from eqs (11b) and (11c) it yields

Hr = −
AJn+(1/2)(kr) cosmφ

jωµ0r3/2

×







sin2 θ
d2

dθ2
{Pm

n (cos θ)} − 2 cos θ
d

dθ
{Pm

n (cos θ)}

− m2

sin2 θ
{Pm

n (cos θ)}






. (12)

Using recurrence relations for Pm
n (cos θ) (Appendix C, eqs (C1) and (C2)) the

term within the square bracket of eq. (12) is simplified to give −n(n+1)Pm
n (cos θ).

Therefore, the expression for Hr becomes

Hr =
n(n+ 1)A

jωµ0r3/2
Jn+(1/2)(kr)P

m
n (cos θ) cos mφ. (12a)

To get the expressions for Eθ and Eφ is straightforward, as RHSs of eqs (4b) and (4c)
involve Er which vanishes for the TE mode leaving single term for these equations.
The expressions for Eθ and Eφ are determined as
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Hθ =
A

jωµ0r

d

dr

{√
rJn+(1/2)(kr)

} d

dθ
{Pm

n (cos θ)} cosmφ, (12b)

Hφ = − mA

jωµ0r sin θ

d

dr

{√
rJn+(1/2)(kr)

}

Pm
n (cos θ) sinmφ. (12c)

Similarly, for the TM modes the field components are given by

Er =
n(n+ 1)A

jωε0εrr3/2
Jn+(1/2)(kr)P

m
n (cos θ) cosmφ, (13a)

Eθ =
A

jωε0εrr

d

dr

{√
rJn+(1/2)(kr)

} d

dθ
{Pm

n (cos θ)} cosmφ, (13b)

Eφ = − mA

jωε0εrr sin θ

d

dr

{√
rJn+(1/2)(kr)

}

Pm
n (cos θ) sinmφ, (13c)

Hr = 0, (14a)

Hθ = −
mA√
r sin θ

Jn+(1/2)(kr)P
m
n (cos θ) sin mφ, (14b)

Hφ = − A√
r
Jn+(1/2)(kr)

d

dθ
{Pm

n (cos θ)} cosmφ. (14c)

It must be mentioned here that the field expressions obtained in the present case
differ from those obtained by Waldron [3] by a factor of jωµ0 for the TE modes
and by a factor of jωε0εr for the TM modes.

3. Characteristic equations for the TM and the TE modes

Having determined the electric and the magnetic field expressions for the TE and
TM modes, one can derive the characteristic or the eigenvalue equations for these
modes employing the boundary conditions. On the metal surface, i.e., r = a, the
electric and the magnetic fields satisfy the boundary conditions, that the tangential

components of ~E are zero for all θ and φ, hence, for the TM modes one gets from
eqs (13b) and (13c),

[

d

dr

{√
rJn+(1/2)(kr)

}

]

r=a

= 0. (15)

On differentiation, eq. (15) yields

Jn+(1/2) (kr) + 2krJ ′n+(1/2) (kr) = 0, (16)

where the dash on J denotes derivative with respect to the argument.
Similarly, for the TE modes one has from eqs (11b) and (11c)
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Jn+(1/2)(kr)
∣

∣

r=a
= 0. (17)

Equations (16) and (17) are the eigenvalue or the characteristic equations for the
TM and TE modes respectively. Using the relations (D1) and (D2), eqs (16) and
(17) are simplified to become respectively,

ka {jn+1(ka)− jn−1(ka)} − jn(ka) = 0, (18)

jn(ka) = 0. (19)

It should be noted here that though the field expressions obtained in the present
case (eqs (11a)–(11c), (12a)–(12c), (13a)–(13c) and (14a)–(14c)) differ from those
obtained by Waldron [3], the characteristic equations (eqs (16) and (17) or (18)
and (19)) are exactly the same in both the cases. Hence, the resonant frequencies
obtained in the present study are essentially the same as obtained by Waldron [3]
for the identical input parameters.

4. Stored energy, losses, and quality factor

So far the treatment is based on the assumption that the dielectric material of the
sphere is lossless and the shield is perfectly conducting. Under such an idealized
condition the quality factor of the resonator is infinite. However, in actual practice
neither the dielectric is a lossless material nor the shield is a perfect conductor and
hence, the resonator has some finite value of the quality factor. Loss of the stored
energy is due to its dissipation through (i) the volume of the dielectric and (ii) the
surface of the shield.

4.1 Stored energy

The energy W stored in a shielded dielectric medium of permittivity ε and perme-
ability µ is given by

W = ε

∫∫∫

V

~E · ~E∗ dV = µ

∫∫∫

V

~H · ~H∗ dV , (20)

where V is the volume of the dielectric. For the spherical geometry the volume
element is dV = r2 sin θ dr dθ dφ. Hence, the energy stored in the dielectric sphere
for the TM and the TE modes can be determined using the field expressions.

For the TE modes, Er = 0 and for n = 1 and m = 0 one has P 0
1 (cos θ) = cos θ

(eq. (C4)) and hence

Eθ = 0

Eφ = − 1√
r
AJ3/2 (kr) sin θ

Eφ · E∗

φ =
A2J2

3/2(kr) sin
2 θ

r



















. (21)
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Hence, the energy stored in the resonator for the TE10l mode is given by

W1 = ε0εrA
2

∫ 2π

0

dφ

∫ π

0

sin3 θ dθ

∫ a

0

rJ2
3/2(kr)dr. (22)

Using the value of the integral involving r from eq. (D3) and using the relations
(D1), (D4)–(D6) eq. (22) on simplification becomes

W1 =
8

3
ε0εrkA

2a3
{

j21(ka)− j0(ka)j2(ka)
}

. (23a)

Similarly, for the TE20l and TE30l modes, the expressions for the energy stored
in the dielectric sphere are given by

W2 =
24

5
ε0εrkA

2a3
{

j22(ka)− j1(ka)j3(ka)
}

, (23b)

W3 =
48

7
ε0εrkA

2a3
{

j23(ka)− j2(ka)j4(ka)
}

. (23c)

Expressions for the energy W ′ stored in the resonator for the TM modes are deter-
mined using the following equation:

W ′ = µ0

∫ 2π

0

∫ π

0

∫ a

0

( ~H · ~H∗) r2 sin θ dr dθ dφ. (24)

For the TM10l modes n = 1, m = 0 and hence,

Hr = 0
Hθ = 0

Hφ =
A√
r
J3/2(kr) sin θ

Hφ ·H∗

φ =
A2

r
J2

3/2(kr) sin
2 θ



























. (25)

Equations (24) and (25) give us

W ′

1 = µ0A
2

∫ 2π

0

dφ

∫ π

0

sin3 θ dθ

∫ a

0

rJ2
3/2(kr)dr. (26)

Equation (26) on simplification gives us

W ′

1 =
8

3
µ0kA

2a3
{

j21(ka)− j0(ka)j2(ka)
}

. (27a)

Similarly, for the TM20l and TM30l modes, the energy expressions are given by

W ′

2 =
24

5
µ0kA

2a3
{

j22(ka)− j1(ka)j3(ka)
}

, (27b)

W ′

3 =
48

7
µ0kA

2a3
{

j23(ka)− j2(ka)j4(ka)
}

. (27c)
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4.2 Losses

The power loss P of the system is defined as

P = Pm + Pd, (28)

where Pm is the metallic loss due to a finite high conductivity of the metallic shield
and Pd is the dielectric loss due to its finite small conductivity.

The metallic loss Pm is a surface phenomenon and it occurs due to finite conduc-
tivity of the metal shield. Let Rs be the surface resistivity defined by

Rs =
1

σ d
, (29)

where σ = metallic conductivity and d = skin depth given by

d =
√

2/ωµ0σ. (30)

The metallic loss Pm depends on Rs and is given by

Pm = Rs

∫

metallic surface

∫

( ~H · ~H∗ dS)r=a, (31)

where dS = r2 sin θ dθ dφ is the surface area element.
The dielectric loss is a volume phenomenon and is a result of finite non-zero

(though small) conductivity (σd) of the dielectric material which is given by

σd = ωε tan δ, (32)

where tan δ is known as the loss tangent of the material and is given by

tan δ =
ε′′

ε′
. (33)

Here ε′ and ε′′ are the real and the imaginary parts of the permittivity ε, i.e.,

ε = ε′ + jε′′. (34)

Thus, a finite non-zero conductivity of the dielectric medium results in a complex
permittivity of the medium. The loss tangent is also defined as

tan δ =
σd

ωε
(35)

with the complex permittivity ε given by

ε = ε0

(

1− jσd

ωε0

)

. (36)

From eqs (34) and (36) ε′ = ε0 and ε′′ = σd/ω. In terms of σd the energy lost in
the dielectric medium Pd is given by
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Pd = σd

∫∫∫

V

~E · ~E∗ dV . (37)

The expression for the energy loss on the metal surface of the sphere can be
calculated as follows. For the TE modes, for n = 1 and m = 0 one has, Hr = 0
since, solution of eq. (17) demands that J3/2(ka) = 0. Moreover, Hφ = 0 and Hθ

is given by

Hθ = −
A

jωµ0r

d

dr

{√
rJ3/2 (kr)

}

sin θ. (38)

From eq. (38) one has

HθH
∗

θ =
1

4r3ω2µ2
0

A2{J3/2(kr) + 2kr J ′3/2(kr)}2 sin2 θ. (39)

Equations (31) and (39) give expression of energy lost for the TE10l mode as

Pm,1 =

√

2ωµ0

σ

∫ 2π

0

∫ π

0

A2

4r3ω2µ2
0

{J3/2(kr) + 2kr J ′3/2(kr)}2

×r2 sin3 θ dθ dφ. (40)

Now, since at r = a, J3/2(ka) = 0⇒ j1(ka) = 0, using relation (D7) and evaluating
the integrals, eq. (40) yields

Pm,1 =
16

3

√

1

2σω3µ3
0

A2a2k3j′21 (ka). (41a)

Similarly, for the TE20l and TE30l modes, the expressions for the energy loss on
the metal surface of the sphere are given by

Pm,2 =
48

5

√

1

2σω3µ3
0

A2a2k3j′22 (ka), (41b)

Pm,3 =
96

7

√

1

2σω3µ3
0

A2a2k3j′23 (ka). (41c)

The expressions for the dielectric loss for the TE10l, TE20l and TE30l modes can
be calculated using eqs (20), (23), (35), and (37) as

Pd,1= ωW 1 tan δ, (42a)

Pd,2= ωW 2 tan δ, (42b)

Pd,3= ωW 3 tan δ. (42c)

Similarly, the expressions for the energy loss on the metal surface for the TM modes
are given by
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P ′

m,1 =
16

3

√

ωµ0

2σ
A2a2k j21(ka), (43a)

P ′

m,2 =
48

5

√

ωµ0

2σ
A2a2k j22(ka), (43b)

P ′

m,3 =
96

7

√

ωµ0

2σ
A2a2k j23(ka). (43c)

Finally the expressions for the dielectric loss for the TE10l, TE20l and TE30l

modes can be calculated from eqs (20), (27), (35) and (37) as

P ′

d,1 = ωW ′

1 tan δ, (44a)

P ′

d,2 = ωW ′

2 tan δ, (44b)

P ′

d,3 = ωW ′

3 tan δ. (44c)

4.3 Quality factor

The quality factor Q is defined as

Q =
Energy stored

Energy loss per cycle
, (45)

Q = ω
W

Pm + Pd
, (46)

where W is the energy stored in dielectric medium, Pm is the metallic loss and Pd

is the dielectric loss. With the help of eq. (46) one can calculate the quality factor
for the TE and TM modes. The expression of the quality factor Qn for the TE
modes is obtained using eqs (23), (41), (42) and (46) as

Qn =
1

tan δ + gfn(j)
, (47)

where n = 1, 2 and 3 for the TE10l, TE20l and TE30l modes respectively and g and
fn(j) are given by

g =

√

2
√
εr

σµ0acxnl
, (48)

fn(j) =
j′2n (ka)

j2n(ka)− jn−1(ka)jn+1(ka)
. (49)

Here, xnl is the lth root of eqs (18) and (19) for the TM and TE modes respectively
for a given value of n and the dash on jn in eq. (49) denotes derivative with respect
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to its argument. Similarly, the expression of the quality factor Q′

n for the TM
modes is determined using eqs (27), (43), (44) and (46) and it is given by

Q′

n =
1

tan δ + gf ′n(j)
, (50)

where f ′n(j) is given by

f ′n(j) =
j2n(ka)

j2n(ka)− jn−1(ka)jn+1(ka)
. (51)

It must be noted here that although the expressions (47) and (50) have been derived
on the basis of the values of n = 1, 2 and 3, these are valid for any value of n.

5. Numerical calculations

Solving eqs (18) and (19) gives the value of ka as

ka =
2πa

λ
=

2πa

λ0

√
εr, (52)

where λ0 is the value of free-space wavelength and λ is the wavelength in dielectric at
which the resonator oscillates in the appropriate mode. The frequency of oscillation
is given by

νnl =
xnlc

2πa
√
εr
, (53)

where xnl is the value of 2πa/λ = ka which satisfies eq. (18) or (19). If xnl is the lth
root of the appropriate equation with a given value of n, the mode is Enml (TMnml)
or Hnml (TEnml) mode (n is an integer not equal to zero, m = 0, 1, 2, . . . , n). It
must be noted that the eigenvalue equation and so the frequency does not depend on
m, i.e., φ. Therefore, modes with a given value of n are n+1 fold degenerate, i.e., all
the modes with the same value of n but with different values of m (m = 0, 1, . . . , n)
have the same frequency. However, with a given value of n, eqs (18) and (19) have
a number of roots (l = 1, 2, 3, . . . correspond to the first, second, third, . . . roots
respectively. Hence, the roots of eqs (18) and (19) and so the frequencies for the
TM and TE modes are specified with two indices (n and l) only. In order to solve
eqs (18) and (19) one has the value of j0(x) = sinx/x and that for the higher values
of n (= 1, 2, 3, . . .) can be calculated from the relation

jn+1(x) = −xn
d

dx

{

jn(x)

xn

}

. (54)

Hence, eqs (18) and (19) are simple algebraic equations and can be solved numeri-
cally. The first six roots of eqs (18) and (19) are given in tables 1 and 2 respectively.
With a = 1 µm and εr = 3.78 (quartz) the frequencies have been calculated and
these are collected in tables 3 and 4 respectively for the TM and TE modes for
n = 1–6 and l = 1–6.
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Table 1. Roots of the characteristic equation (eq. (18)) for the TM modes.

l

n 1 2 3 4 5 6

1 2.7437 6.1168 9.3166 12.4859 15.6439 18.7963
2 3.8702 7.7431 10.7130 13.9205 17.1027 20.2720
3 4.9734 8.7218 12.0636 15.3136 18.5242 21.7139
4 6.0619 9.9675 13.3801 16.6742 19.9154 23.1278
5 7.1402 11.1890 14.6701 18.0085 21.2815 24.5178
6 8.2108 12.3915 15.9387 19.3212 22.6263 25.8873

Table 2. Roots of the characteristic equation (eq. (19)) for the TE modes.

l

n 1 2 3 4 5 6

1 4.4934 7.7253 10.9041 14.0662 17.2208 20.3713
2 5.7635 9.0950 12.3229 15.5146 18.6890 21.8539
3 6.9879 10.4171 13.6980 16.9236 20.1218 23.3042
4 8.1826 11.7049 15.0397 18.3013 21.5254 24.7276
5 9.3558 12.9665 16.3547 19.6532 22.9046 26.1278
6 10.5128 14.2074 17.6480 20.9835 24.2628 27.5079

Table 3. Resonant frequencies (×10−14 Hz) for the TM modes.

l

n 1 2 3 4 5 6

1 0.67 1.50 2.29 3.07 3.84 4.62
2 0.95 1.83 2.63 3.42 4.20 4.98
3 1.22 2.14 2.96 3.76 4.55 5.33
4 1.49 2.45 3.29 4.09 4.89 5.68
5 1.75 2.75 3.60 4.42 5.23 6.02
6 2.02 3.04 3.91 4.75 5.56 6.36

Using eqs (50) and (53) the Q values for the TE and TM modes have been
calculated for n = 1–6 and l = 1–6. In order to calculate the quality factors the
shield has been assumed to be made up of Cu which has σ = 0.58 × 108/Ωm.
The tangent loss for the quartz has value 10−4 for the optical region. The Q
values are collected in tables 5 and 6 for the TM and TE modes respectively.
We have also calculated the resonant frequencies and the quality factors for the
microwave region for a material [15] with εr = 9.7. For this material the value of
tan δ = ν/40000 (where ν is the frequency in GHz) has been assumed by earlier
workers [15]. However, we have taken the value of tan δ as 10−4 for the microwave
region also. The frequencies lie in the range 40–400 GHz for the TM modes and in
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Table 4. Resonant frequencies (×10−14 Hz) for the TE modes.

l

n 1 2 3 4 5 6

1 1.10 1.89 2.68 3.45 4.23 5.00
2 1.42 2.23 3.03 3.82 4.59 5.38
3 1.72 2.56 3.36 4.16 4.94 5.72
4 2.01 2.87 3.69 4.49 5.29 6.07
5 2.30 3.18 4.02 4.83 5.62 6.42
6 2.58 3.49 4.33 5.15 5.96 6.76

Table 5. Quality factors for the TM modes.

l

n 1 2 3 4 5 6

1 90 173 219 255 286 313
2 88 179 227 264 295 322
3 85 183 233 271 302 329
4 83 186 238 276 308 336
5 82 187 241 281 313 341
6 80 188 244 284 317 345

Table 6. Quality factors for the TE modes.

l

n 1 2 3 4 5 6

1 157 204 242 274 302 327
2 177 221 257 290 314 339
3 194 236 270 299 325 349
4 210 250 283 311 336 360
5 224 263 294 322 347 369
6 237 275 305 332 356 378

the range 70–425 GHz for the TE modes. The Q values lie in the ranges 1850–4720
and 4710–4960 for the TM and TE modes respectively. The frequencies and the
Q values calculated in the present case for the microwave region agree with those
reported in [15].

Appendix A: Some vector relations

~∇× ~A =
1

r2 sin θ





r̂ rθ̂ r sin θ φ̂
∂/∂r ∂/∂θ ∂/∂φ
Ar rAθ r sin θ Aφ



 , (A1)
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~∇× (~∇× ~A) = ~∇(~∇ · ~A)−∇2( ~A), (A2)

( ~A× ~B) · ~C = ~A · ( ~B × ~C), (A3)

~∇ψ = r̂
∂ψ

∂r
+ θ̂

1

r

∂ψ

∂θ
+ φ̂

1

r sin θ

∂ψ

∂φ
, (A4)

~∇ · ~∇ψ = ∇2ψ =
1

r2 sin2 θ

{

sin θ
∂

∂r

(

r2
∂ψ

∂r

)

+
∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

sin θ

∂2ψ

∂φ2

}

. (A5)

Appendix B: Helmholtz equation and its solution

The Helmholtz equation is given by
(

∇2 + k2
)

ψ = 0, (B1)

where ψ ≡ ψ (r, θ, φ) is some scalar function.
Using the expression of ∇2 in the spherical polar coordinate system (eq. (A5)),

assuming ψ (r, θ, φ) = R(r)Θ (θ)Φ (φ), and employing the method of separation of
variables, eq. (B1) gives

r2 sin2 θ
R̈

R
+ 2r sin2 θ

Ṙ

R
+ sin2 θ

Θ̈

Θ
+ sin θ cos θ

Θ̇

Θ

+
Φ̈

Φ
+ ω2εrε0µ0r

2 sin2 θ = 0, (B2)

where the dots denote derivatives with respect to r, θ, φ as the case may be. Since
φ occurs in Φ̈/Φ only, it can be replaced by a constant −m2, i.e.,

Φ̈

Φ
+m2 = 0. (B3)

The solutions of eq. (B3) are of the form

Φ(φ) ∼
{

cos
sin

}

mφ. (B4)

Now eq. (B2) is reduced to the following form:

r2

R

{

R̈+
2Ṙ

r
+ ω2εrε0µ0R

}

+
1

Θ

{

Θ̈ + cot θ Θ̇− m2Θ

sin2 θ

}

= 0. (B5)

Since the first bracketed term contains r only and the second bracketed term con-
tains θ only, these two terms can separately be equated to a constant. Let the first
bracketed term be replaced by a constant n(n+ 1) then one has
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Θ̈ + cot θΘ̇ +

{

n(n+ 1)− m2

sin2 θ

}

Θ = 0, (B6)

R̈+
2Ṙ

r
+

{

ω2εrε0µ0 −
n(n+ 1)

r2

}

R = 0. (B7)

The solutions of eq. (B6) are associated Legendré polynomials Pm
n (cos θ) and Qm

n

(cos θ). However, Qm
n (cos θ) has singularities at cos θ = ±1, leading to infinite values

of ψ and hence, of the electromagnetic field. Therefore, the acceptable solution of
eq. (B6) is given by

Θ(θ) ∼ Pm
n (cos θ). (B8)

Substituting X = R
√
r in eq. (B7), it reduces to

Ẍ +
Ẋ

r
+

{

ω2εrε0µ0 −
(n+ (1/2))2

r2

}

X = 0, (B9)

where the dots denote derivatives with respect to r. Equation (B9) is Bessel’s
differential equation of order (n + (1/2)). On changing the variable from r to

(
√

ω2ε0µ0εr)r = (ω
√
ε0µ0εr)r =

(

ω
c

√
εr
)

r = kr, where c = 1/
√
ε0µ0 is the

speed of light in vacuum, eq. (B9) has the solutions of the form Jn+(1/2)(kr) or
Yn+(1/2)(kr) or a linear combination of these two. Since Yn+(1/2)(kr) has infinite
value at r = 0, any linear combination of Jn+(1/2)(kr) and Yn+(1/2)(kr) also has
infinite value at r = 0. Hence, the acceptable solution of eq. (B9) is of the form

X(r) ∼ Jn+(1/2)(kr). (B10)

Thus, R(r) ∼ Jn+(1/2)(kr)/
√
r and Ψ is given by

Ψ(r, θ, φ) =
A√
r
Jn+(1/2)(kr)P

m
n (cos θ) cosmφ, (B11)

where A is a constant. Here, we have dropped the sin mφ term without any loss
of generality. Since Ψ is a single valued function, it must take the same value
for φ and φ + 2π, so cos mφ = cosm(φ + 2π) = cos(mφ + 2mπ) = cosmφ only
when m = 0,±1,±2,±3, . . ., i.e., m takes integral values and this limits n also to
integral values. Negative values of m give the same field distributions as positive
and hence, do not provide separate solutions. Similarly, negative values of n also do
not produce extra solutions. The constant m must be less than or equal to n. The
possibilities that the constant n can or cannot take value as 0 is discussed in the
following. However, m can always take 0 value and it gives rotational symmetry
about the diameter of a sphere joining the points θ = 0◦ and θ = 180◦.

Appendix C: Recurrence relations and expressions for some associated

Legendré polynomials

(1− x2)1/2P ′m
n (x) =

1

2
Pm+1
n (x)− 1

2
(n+m)(n−m+ 1)Pm−1

n (x) (C1)
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Pm+1
n (x)− 2mx

(1− x2)1/2
Pm
n (x) + {n(n+ 1)−m(m− 1)}Pm−1

n (x) = 0,

(C2)

P 0
n(x) = Pn(x), (C3)

P 0
1 (x) = P1(x) = x = cos θ, (C4)

P 0
2 (x) = P2(x) =

1

2
(3x2 − 1) =

1

2
(3 cos2 θ − 1), (C5)

P 0
3 (x) = P3(x) =

1

2
(5x3 − 3x) =

1

2
(5 cos3 θ − 3 cos θ). (C6)

The dash on P in eq. (C1) denotes its derivative with respect to the argument x.

Appendix D: Bessel functions, spherical Bessel functions

and related expressions

2J ′ν(x) = Jν−1(x)− Jν+1(x), (D1)

jn(x) =

√

π

2x
Jn+(1/2)(x), (D2)

∫ a

0

J2
ν (kr)r dr =

a2

2

{

J ′2ν (ka) +

(

1− ν2

k2a2

)

J2
ν (ka)

}

, (D3)

Jν−1(x) + Jν+1(x) = (2ν/x)Jν(x), (D4)

J ′ν(x) = (ν/x)Jν(x)− Jν+1(x), (D5)

J ′ν(x) = Jν−1(x)− (ν/x)Jν(x), (D6)

Jn+(1/2)(x) + 2xJ ′n+(1/2)(x) =

√

8x

π
[jn(x) + xj′n(x)] , (D7)

jn(x) + xj′n(x) = xjn−1(x)− njn(x), (D8)

j′n(x) = jn−1(x)−
(n+ 1)

x
jn(x). (D9)

Here, J and j appearing in eqs (D1)–(D9) are the Bessel and the spherical Bessel
functions of the first kind; ν is any integral or non-integral number, n is an integer
and the dash on J or j denotes derivative with respect to the argument.
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