後期中間試験模範解答(3E 電子計算機)

電気工学科 氏名 学籍番号

1 基礎

1.1 コンピューター

[問1] 各1点

(ア) 2 進数

(イ) 機械

(ウ) アセンブラ

(エ) 高級

(オ) コンパイル

(力) 複数

(**キ**) アセンブル (ク) CPU

(ケ) COMET II (コ) CASL II

[問2] 各2点

(ア) d

(イ) e

(ウ) b

(**工**) h

[問3] 10点

- (1) 1次元的に並んだメモリーがあり、そこにプログラム(命令)もデータも格納される、メモリーの内容は、自然数の番地 で参照できる.
- (2) メモリーに格納されたプログラム (命令) とデータの見かけ上の区別はない.プログラムをデータとして見ることも, データをプログラムとしてみることもできる.

1.2 基数の変換

[問1] 5点

以下のように変換を行う.

$$(11001010)_2 = (1 \times 2^7 + 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0)_{10}$$
$$= (128 + 64 + 8 + 2)_{10}$$
$$= (202)_{10}$$

[問2] 5点

2 で割った余りを並べれば,2 進数となる.右のように計算 すれば , $(354)_{10} = (101100010)_2$ が得られる .

[問3] 5点

2 進数から 16 進数への変換は,2 進数を下位から 4 桁ずつ区切り,それぞれを 16 進数に変換し,それを並べればよい.

$$(1111)_2 = (15)_{10} = (F)_{16}$$
 $(0111)_2 = (7)_{10} = (7)_{16}$ $(0011)_2 = (3)_{10} = (3)_{16}$ $(1010)_2 = (10)_{10} = (A)_{16}$

したがって, $(1111011100111010)_2 = (F73A)_{16}$ となる.

[問4] 5点

16 進数の各桁を 2 進数の 4 桁で表し ,その 2 進数を並べれば ,16 進数を 2 進数に変換できる .

$$(A)_{16} = (10)_{10} = (1010)_2$$
 $(9)_{16} = (9)_{10} = (1001)_2$ $(4)_{16} = (4)_{10} = (0100)_2$ $(F)_{16} = (15)_{10} = (1111)_2$

したがって, $(A94F)_{16} = (1010100101001111)_2$ となる.

2 COMET II

2.1 メモリーとレジスター

 [問1] ②点
 [問2] ②点
 [問3] ②点

 16 ビット
 16 ビット
 16 ビット

[問4] 5点

メインメモリーもレジスタもデータを蓄える.しかし,以下のような相違がある.

- (1) レジスターは CPU を構成する部品のひとつであるが,メインメモリーは CPU とは独立にある.
- (2) 記憶領域は , レジスターは小さく , メインメモリーは大きい . COMET II の場合 , レジスターは 20 個程度に対して , メインメモリーは 65536 個の記憶領域がある .
- (3) メインメモリーはプログラム (命令とデータ) を格納する.それに対して,レジスターは CPU が演算するときに必要な一時的なデータを格納する.
- (4) メインメモリーは整数のアドレスを指定してアクセスするが、レジスターはレジスター名を指定してアクセスする.

[問 5] 5点

2.2 メモリー中のデータとプログラム

[問1] [11点

[問2] 10点

A000	0	0	2	3
A001	F	F	D	D
A002	0	0	4	1
A003	0	0	6	В
A004	0	0	6	9
A005	0	0	3	8
A006	0	0	0	8
A007				
A008				
A009				
AOOA				
A00B				
A00C				
A00D				
AOOF				
A010				

A000	1	0	1	0
A001	А	0	0	7
A002	2	1	1	0
A003	А	0	0	8
A004	1	1	1	0
A005	А	0	0	9
A006	8	1	0	0
A007	0	0	0	F
800A	0	0	0	8
A009	0	0	0	0
AOOA				
A00B				
A00C				
AOOD				
AOOF				
A010				

3 プログラムの作成

[問1] 10点

PGM	\mathbf{START}	
	${f LD}$	$\mathbf{GR1}$, A
	ADDA	$\mathbf{GR1}$, B
	\mathbf{ST}	$\mathbf{GR1}$, C
	\mathbf{RET}	
A	\mathbf{DC}	3
В	\mathbf{DC}	5
\mathbf{C}	\mathbf{DS}	1
	END	

4 応用問題

[問1] 5点

CASL II の命令語の構成を見ると,指標レジスターを使う場合,指標レジスタの指定は最下位の 4 ビットに指標レジスターの番号を書くことになっている.指標レジスターが使える命令語を使うが,指標レジスターを使わない場合,その最下位 4 ビットは $(0)_{16}$ を書くことになっている.もし,汎用レジスターの GRO を指標レジスターとして使った場合,指標レジスターを使っていない場合と区別できなくなる.この問題を避けるために,汎用レジスターの GRO は,指標レジスターとして使えないことになっている.

これに関しては仕様に何も書かれていないので,本当のところは分からない.しかしながら,ここで説明したように考えると納得できる.